École Polytechnique is a leading French ‘Grande Ecole’ which combines top-level research, academics, and innovation at the cutting-edge of science and technology. Its curriculum promotes a culture of excellence with a strong emphasis on science, anchored in humanist traditions.

https://www.polytechnique.edu/en/about-ecole-polytechnique
Some facts about EP

• Teaching
 3000 students
 2000 polytechnic engineers - 20% international
 430 masters students - 60% international
 575 doctoral students - 40% international
 670 lecturers-researchers
 20% international lecturers
 6 members of the Académie des sciences
 27 masters disciplines
 10 teaching and research departments
Some facts about EP

• Research
 1608 people working in the Research Centre
 981 of which are researchers
 572 PhDs
 21 laboratories
 22.5 M€ in research contracts
 Over 1250 publications a year

• International
 181 agreements with foreign universities
 786 international students
 65 nationalities
Some facts about EP

• Master of Computer Science degree operated by l’X and delivered by Université Paris Saclay

• Master’s programs in cooperation with its partner institutions:
 • Paris-Sud
 • ENSTA ParisTech
 • Télécom ParisTech
 • CEA/INSTN
 • CentraleSupélec

… makes things complicated …
Double Degree

... yet to be signed
... draft with the master‘s COMASIC (Master Conception, Modélisation et Architecture des Systèmes Industriels Complexes):

COMASIC aims at providing a training of excellence in the design, modeling and architecture of complex computer systems.

Usual frame:
• Master program
• 1 year at TUM, 1 year at EP + common master‘s thesis
Details of **COMASIC**

3 categories of computer systems are dealt with:

- **Embedded** systems, such as
 - primary flight computers in aeronautics
 - X-by-wire
 - Anti-Blocking Systems in the automotive industry
 - control of a nuclear plant in the energy industry
 - etc.

- **Cyber-physical** systems, such as
 - smart-grids, robot swarms etc.
 - mostly composed of embedded systems interconnected over a network, controlling and sensing heterogeneous physical apparatus.
COMASIC

- **Information** systems, such as
 - enterprise systems, billing systems etc.
 - information systems needed to manage and optimize big cyber-physical systems and their data (e.g. smart cities etc.)
Sample Courses

Theme: Systems architecture and model-driven engineering

- Systems modelling with objects
- Systems architecture
- Reliability
- Model-driven engineering for complex real-time systems
- Requirement engineering

Theme: Verification and validation

- Inductive validation of programs and hybrid systems
- Tests and test covering strategies
- Deductive verification of programs
- Software Model-Checking
Sample Courses

Theme: Software and hardware platforms
- Embedded systems electronic architecture
- Real-time kernels
- Synchronous and reactive systems
- Distributed and autonomous systems

Theme: Signal processing, optimisation and control
- Systems and signals
- Modelling and control by state representation
- Optimisation
Sample Courses

Theme: Information systems architecture

- Data mining for big data
- Modelling and analyzing security risks in complex systems
- Distributed algorithms

Theme: Modelling applications

- Information systems of telecom and banking companies
- Transportation systems
- Control of real-time systems
Sample Courses

Theme: Continuous time models and simulation

Modelling and simulation of dynamical systems
Continuous time modelling
Analysis and solving of DAEs
Modelica and Dymola

Note:
- each course 2.5 ECTS
- many courses equivalent to TUM courses
Contact Person

• TUM Informatics: Dr. Angelika Reiser – reiser@in.tum.de

• http://db.in.tum.de/people/sites/reiser/index.html?lang=en