Overview
- So far:
 - ...
 - Image synthesis
 - Ray tracing, texture mapping
- Today
 - Antialiasing
 - Prefiltering
 - Supersampling
 - Postfiltering
 - Stochastic and adaptive sampling

Antialiasing
- In computer graphics an analog signal is point sampled
 - Image is just a continuous analog signal that is sampled at discrete pixel positions
 - Pixel spacing determines the frequencies (the size of details) that can be reconstructed
 - Undersampling the image causes aliasing artifacts
 - Note: sampling frequency decreases with increasing distance to the viewpoint

Antialiasing
- Original scene and brightness distribution along a scan line
Antialiasing
- Point sampling the scene at pixel centers

Antialiasing
- The rendered image

Antialiasing
- Jagged profiles

Antialiasing
- Loss of details

Antialiasing
- Disintegrated texture mapping

Antialiasing
- Cause of aliasing
 - The sampling frequency is not high enough to cover all details
 - It is below the Nyquist limit:
 - Shannon's Sampling theorem: "the signal has to be sampled at a frequency that is equal to or higher than two times the highest frequency in the signal"
 - Overlap between replicated copies in frequency domain
 - High frequencies appear as low frequency regular patterns
 - Understand the basics of sampling theory
Fourier transform

- Two different approaches to describe a function
 - Spatial domain vs. frequency domain
 - Every periodic function can be represented as

 \[
 f(x) = \frac{1}{2} a_0 + \sum_{k=1}^{\infty} \left(a_k \cos(2\pi k x) + b_k \sin(2\pi k x) \right)
 \]
 - With

 \[
 a_k = \frac{1}{\pi} \int_{0}^{\pi} f(x) \cos(2\pi k x) dx, \quad b_k = \frac{1}{\pi} \int_{0}^{\pi} f(x) \sin(2\pi k x) dx
 \]

- Example from http://mathworld.wolfram.com/FourierSeries.html

- Non-periodic functions
 - Every reasonable function \(s(x) \) can be represented as a superposition of harmonic (sin/cos) functions

 \[
 s(x) = \text{IFT} (S(f)) = \int S(f) e^{2\pi i f'} dx
 \]

 \[
 S(f) = \text{FT} (s(x)) = \int s(x) e^{-2\pi i f x} dx
 \]
 - \(e^{i\theta} = \cos \theta + i \sin \theta \)
 - FT: Fourier transform
 - IFT: Inverse Fourier transform

- Some functions and their frequency representation

- Some functions and their frequency representation

- Some functions and their frequency representation
Fourier transform

- Some functions and their frequency representation

\[s(x) = 1 \quad S(f) = \delta(f) \]

\[\delta(f) = \begin{cases} \infty & \text{if } f = 0 \\ 0 & \text{else} \end{cases} \]

see exercise

Fourier transform

- Some functions and their frequency representation

\[s(x) \quad S(f) \]

The comb function: many regularly spaced copies of the Dirac delta function

\[s(x) = \sum_{k=-\infty}^{\infty} \delta(x - kT) \]

Spatial domain

\[\xi(f) = \sum_{k=-\infty}^{\infty} \delta(f - kT) \]

Frequency domain

Frequency space operations

- Operations between signals can either be performed in spatial or frequency domain
- Transform signals to frequency space
- Perform operation in frequency space
- Transform result back to spatial domain

\[g(x) \text{ op } h(x) = IFT(FT(g(x)) \text{ OP } FT(g(x))) \]

Convolution

- Sliding function \(v(x) \) along function \(u(x) \)

\[s(x) = u(x) * v(x) = \int_{-\infty}^{\infty} u(x') \cdot v(x - x') dx' \]

http://mathworld.wolfram.com/Convolution.html
Convolution

- Convolution with the delta function \(\delta(x) \)
 \[
 s(x) = u(x) * \delta(x) = u(x)
 \]
 \[
 s(x) = u(x) * \delta(x - x_0) = u(x - x_0)
 \]
- Convolution with comb function
 \[
 s(x) = u(x) * \sum_{k=-\infty}^{\infty} \delta(x - kT) = \sum_{k=-\infty}^{\infty} u(x - kT)
 \]

In frequency domain: convolution becomes multiplication

\[
FT(u(x) * v(x)) = FT(u(x)) \cdot FT(v(x))
\]

... and multiplication becomes convolution

\[
FT(u(x) \cdot v(x)) = FT(u(x)) \ast FT(v(x))
\]

Sampling

- Question
 - What is sampling, i.e. evaluation of a continuous function at evenly spaced positions?
- Answer
 - Multiplication of the function with an appropriately spaced comb function

In frequency domain

- Multiplication with a comb function becomes convolution with a comb function of different spacing
- Example: given spectrum \(S(f) \) of a signal \(s(x) \)

Convolution with comb-function produces multiple shifted copies of \(S(f) \)
- If \(1/T \) is large enough, the individual copies do not overlap
- Depends on maximum frequency \(f_0 \) in \(s(t) \)

- If \(T \) is too large (1/T becomes too small), overlap occurs
Reconstruction

- Question
 - Can we obtain the original function \(s(t) \) if we are only given the discrete samples?
- Answer
 - Only if sampling frequency \(T \) has been chosen large enough, so that the copies of \(S(f) \) do not overlap

THIS IS CALLED ALIASING

Reconstruction

- What happens if \(T \) was not small enough?
 - Copies of \(S(f) \) overlap
 - Cannot clearly separate the individual copies
 - High frequencies of one copy get interpreted as low frequencies of a neighboring copy

Sampling and Reconstruction

Antialiasing

- Cause of aliasing
 - Point sampling is the multiplication of the analog signal with an impulse train
 - Look at discrete sampling in the frequency domain
 - The Fourier Transform of an impulse function with spacing \(T \) in the spatial domain gives an impulse function with spacing \(1/T \) in the frequency domain
 - The multiplication of functions in one domain corresponds to the convolution of both functions in the other domain

Antialiasing

- Aliasing artefacts
 - Moiré interference pattern
 - Aliasing

- Aliasing artefacts
 - Moiré interference pattern
 - Aliasing

- Aliasing artefacts
 - Moiré interference pattern
 - Aliasing

- Aliasing artefacts
 - Moiré interference pattern
 - Aliasing

- Aliasing artefacts
 - Moiré interference pattern
 - Aliasing

- Aliasing artefacts
 - Moiré interference pattern
 - Aliasing
Antialiasing

- Aliasing artefacts
 - Stair cases – Jaggies
 - Abrupt change in intensity
 - Edges, texture, shadows, highlights
 - Not always aliasing artefacts
 - Rather reconstruction artefacts
 - Result from orientation of the pixel grid

Spatial aliasing

- Supersampling - increase sampling frequency
 - OK, but doesn’t eliminate aliasing
- Prefiltering
 - Antialiasing before sampling
 - Analytic low-pass filtering of geometry
 - Hard to implement
 - Ideal eliminates aliasing completely
 - Sampling the shape of an object very densely within a pixel region
 - Supersampling
 - Postfiltering after reconstruction
 - NO, just blurs the image

Temporal aliasing

- Increase frame rate
 - OK
- Prefiltering (motion blur)
 - Yes, but only for simple geometries
 - Problems with textures etc.
- Postfiltering - averaging several frames
 - NO, generates “double images”

Antialiasing by prefiltering

- Analytic
- Supersampling
 - Higher frequencies
- Ideal reconstruction
 - Convolution with sinc
- Real reconstruction
 - Convolution with box or sphere
 - Sampling frequency must be much higher than Nyquist-frequency

Analytic low-pass filtering

- Ideally eliminates aliasing completely
 - Only works for polygon edges with constant color
 - Weighted or unweighted area sampling
 - Compute distance from pixel to edge
 - Doesn’t work for corners
- Over/Supersampling
 - Very easy to implement
 - Doesn’t eliminate aliasing
 - Sharp edges contain infinitely high frequencies
Antialiasing

- Prefiltering
 - Treat a pixel as an area rather than as a point
 - Determine the color of the part of the object that is covered by that area
 - Use this color as the pixel color

- Prefiltering combines color contributions into a pixel

Example

- Texture filtering
 - Combining texels to determine pixel color
 - Minification: pixels are larger than one texel
 - Magnification: pixels are smaller than one texel
 - Filtering methods
 - Nearest: choose the texel closest to the pixel center
 - Linear: (bi/tri)-linear texture interpolation
 - MipMap: (bi/tri)-linear interpolation in a stack of textures of decreasing resolution
Antialiasing

- Texture filtering

![Texture filtering diagram]

Antialiasing

- Mip-Mapping
 - Only used for minification
 - Copies of the texture are generated that contain the data at every coarser resolution
 - Match between texture resolution and pixel resolution can be achieved

![Mip-Mapping diagram]

Antialiasing

- Supersampling
 - Uses several samples from the scene
 - Averages these samples to get the pixel color
 - Virtually increases image resolution
 - Down-filter the high resolution image to the original size
 - Use different kinds of filters for down-filtering

![Supersampling diagram]
Antialiasing

- Filtering example

Antialiasing

- Instead of regular supersampling patterns use stochastic sampling -> visually less noticeable

Antialiasing

- Regular sampling
 - Visibility of aliases is due to regular sampling grid
 - Human visual system:
 - Sensitive against regular structures
 - But rather insensitive against high frequency noise
- Stochastic sampling
 - Alias frequencies are converted to noise

Antialiasing

- Stochastic supersampling
 - Uniform distribution
 - Minimal correlation between samples
 - Poisson-disk sampling
 - Minimal distance between samples
 - Random generation of samples
 - Jittered sampling
 - Random jittering from regular grid points
 - Stratified sampling
 - Regular partitioning of pixel region
 - One random sample per partition

Antialiasing

- Poisson-disk sampling
 - Distribution of optical receptors on retina

Antialiasing

- Adaptive supersampling
 - Performs supersampling in regions of high frequencies
 - Edges, shadows etc.
 - Has to weight contributions appropriately
Antialiasing

- Example:

[Image: Antialiasing example 1]

[Image: Antialiasing example 2]