Most proofs of theorems given in calculus textbooks are not "memorable" -- the student has no good way of developing the proofs themselves, and memorizing them is really a problem. Over the past 25 years, researchers in Programming Methodology have developed a Calculational Logic and used it for the first time in proving theorems about propositional and predicate logic. With it, one can teach principles and techniques for actually developing proofs. Moreover, this calculational logic formalizes how many proofs are given in mathematics -- in such diverse fields as a theory of integers, set theory, modern algebra, and calculus. Teaching calculational logic before teaching calculus can give the students tools they need to understand calculus proofs. The proofs become memorable, not because one memorizes them but because one can develop them whenever necessary. The learning of calculus a more fruitful and enjoyable activity.