Topic: Syntactic Analysis

Basics: Context-free Grammars

- Programs of programming languages can have arbitrary numbers of tokens, but only finitely many token classes.
- This is why we choose the set of token classes to be the finite alphabet of terminals T.
- The nested structure of program components can be described elegantly via context-free grammars...

Definition: Context-Free Grammar

A context-free grammar (CFG) is a 4-tuple $G = (N, T, P, S)$ with:
- N the set of nonterminals,
- T the set of terminals,
- P the set of productions or rules, and
- $S \in N$ the start symbol.

Conventions:

- For every nonterminal, we collect the right hand sides of rules and list them together.
- The i-th rule for a nonterminal A can be identified via the pair (A, i) (with $i \geq 0$).

Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence of such rewriting steps $A \rightarrow \ldots \rightarrow A_n$ is called derivation.

Derivation

The rewriting relation \rightarrow is a relation on words over $N \cup T$, with
$$\alpha \rightarrow \alpha' \iff \alpha = A_1 A_2 \ldots A_n \land \alpha' = A_1 A_2 \ldots A_n$$
for an $A_i \rightarrow \beta \in P$.

The reflexive and transitive closure of \rightarrow is denoted as \rightarrow^*.
A derivation tree for \(A \in X \):

- Inner nodes: rule applications
- Leaves: terminal or \(\epsilon \)
- The successors of \((B,i)\) correspond to right hand sides of the rule

Leftmost derivation:
- Inner nodes: rule application for \(\epsilon \)
- Leaves: terminals or \(\epsilon \)

The first one is ambiguous, the second one is unique

Special Derivations

In contrast to arbitrary derivations, we find special ones, always rewriting the leftmost (or rather rightmost) occurrence of a nonterminal.

- These are called leftmost (or rather rightmost) derivations and are denoted with the index \(l \) (or \(r \) respectively).
- Leftmost (or rightmost) derivations correspond to a left-to-right (or right-to-left) preorder-DFS traversal of the derivation tree.
- Reverse rightmost derivations correspond to a left-to-right postorder-DFS traversal of the derivation tree

Conclusion:

- A derivation tree represents a possible hierarchical structure of a word.
- For programming languages, only those grammars with a unique structure are of interest.
- Derivation trees are one-to-one corresponding with leftmost derivations as well as (reverse) rightmost derivations.
- Leftmost derivations correspond to a top-down reconstruction of the syntax tree.
- Reverse rightmost derivations correspond to a bottom-up reconstruction of the syntax tree.

Basics of Pushdown Automata

Languages, specified by context free grammars are accepted by Pushdown Automata:

The pushdown is used e.g. to verify correct nesting of braces.

Definition: Pushdown Automaton

A pushdown automaton (PDA) is a tuple \(\mathcal{M} = (Q,T,E,Q_0,F) \) with:

- \(Q \) a finite set of states;
- \(T \) an input alphabet;
- \(E \in Q \) the start state;
- \(F \subseteq Q \) the set of final states and
- \(\delta \subseteq Q \times (T \cup \{\epsilon\}) \times Q^* \) a finite set of transitions

We define computations of pushdown automaton with the help of transitions; a particular computation state (the current configuration) is a pair:

\[\langle q, w \rangle \in Q \times T^* \]

consisting of the pushdown content and the remaining input.
The item pushdown automaton shifts the bullet around the derivation tree ...

(0, ϵ, a bbb) ⊢ (1, a bbb)
(1, a bbb) ⊢ (11, bbb)
(11, bbb) ⊢ (112, kb)
(112, kb) ⊢ (12, k)
(12, k) ⊢ (2, ϵ)

Definition: Deterministic Pushdown Automaton
The pushdown automaton \(M \) is deterministic, if every configuration has maximally one successor configuration.

This is exactly the case if for distinct transitions \((\gamma, x, \gamma'), (\gamma'', x, \gamma') \in \delta \) we can assume:
Is \(\gamma \) a suffix of \(\gamma' \), then \(x \neq x' \) and \(x \neq x' \) is valid.

... for example:

<table>
<thead>
<tr>
<th>States: 0, 1, 2</th>
<th>Final states: 0, 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0, a b bbb)</td>
<td>(0, a b bbb)</td>
</tr>
<tr>
<td>(1, a b bbb)</td>
<td>(1, a b bbb)</td>
</tr>
<tr>
<td>(11, bbb)</td>
<td>(11, bbb)</td>
</tr>
<tr>
<td>(112, kb)</td>
<td>(112, kb)</td>
</tr>
<tr>
<td>(12, k)</td>
<td>(12, k)</td>
</tr>
<tr>
<td>(2, ϵ)</td>
<td>(2, ϵ)</td>
</tr>
</tbody>
</table>

Syntactic Analysis

Chapter 3:
Top-down Parsing

Item Pushdown Automaton – Example

Our example:

\[S \rightarrow AB^0 \quad A \rightarrow a^2 \quad B \rightarrow b^2 \]

Item Pushdown Automaton

The item pushdown automaton \(M \) has three kinds of transitions:

Expansions:
\[[A \rightarrow \alpha \quad B \beta, x] [A \rightarrow \alpha \quad B \beta, \gamma] : \quad \text{for} \]
\[A \rightarrow \alpha \quad B \beta, \quad \gamma \in \delta \]

Shifts:
\[[A \rightarrow \alpha \quad B \beta, \gamma] : \quad \text{for} \quad A \rightarrow \alpha \quad B \beta, \quad \gamma \in \delta \]

Reduces:
\[[A \rightarrow \alpha \quad B \beta, \gamma] : \quad \text{for} \quad A \rightarrow \alpha \quad B \beta, \quad \gamma \in \delta \]

Items of the form: \([A \rightarrow \alpha \quad \bullet] \) are also called complete

Item Pushdown Automaton

Discussion:

- The expansions of a computation form a leftmost derivation
- Unfortunately, the expansions are chosen nondeterministically
- For proving correctness of the construction, we show that for every item the following holds:
 \[([A \rightarrow \alpha \quad B \beta, w] \gamma) ^+ [A \rightarrow \alpha \quad B \beta, x] \quad \text{if} \quad B \rightarrow \gamma w \]

Item Pushdown Automaton

Pushdown Automata

Theorem:
For each context free grammar \(G = (N, T, P, S) \) a pushdown automaton \(M \) with \(L(M) = L(G) \) can be built.

The theorem is so important for us, that we take a look at two constructions for automata, motivated by both of the special derivations:
- \(LL \) to build Leftmost derivations
- \(LR \) to build Rightmost derivations

Item Pushdown Automaton

Construction: Item Pushdown Automaton \(M \)
- Reconstruct a Leftmost derivation.
- Expand nonterminals using a rule.
- Verify successively, that the chosen rule matches the input.

We accept with a final state together with empty input.
Item Pushdown Automaton

Example: $S' \rightarrow S \delta \quad S \rightarrow \epsilon | aSb$

The transitions of the according Item Pushdown Automaton:

<table>
<thead>
<tr>
<th>δ</th>
<th>${S',S}$</th>
<th>${S}$</th>
<th>${\epsilon}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S' \rightarrow S \delta$</td>
<td>${S',S}$</td>
<td>${S}$</td>
<td>${\epsilon}$</td>
</tr>
<tr>
<td>$S \rightarrow \epsilon</td>
<td>aSb$</td>
<td>${\epsilon}$</td>
<td>${\epsilon}$</td>
</tr>
</tbody>
</table>

Conflicts arise between the transitions $(0,1)$ and $(3,4)$, resp.

Topdown Parsing

Problem:
Conflicts between the transitions prohibit an implementation of the item pushdown automation as deterministic pushdown automation.

Idea 1: GLL Parsing
For each conflict, we create a virtual copy of the complete configuration and continue computing in parallel.

Idea 2: Recursive Descent & Backtracking
Depth-first search for an appropriate derivation.

Idea 3: Recursive Descent & Lookahead
Conflicts are resolved by considering a lookup of the next input symbols.

Lookahead Sets

Definition: First₁-Sets
For a set $L \subseteq T^*$ we define:

$$\text{First}_1(L) = \{ \epsilon | \epsilon \in L \} \cup \{ u \in T | \exists v \in T^* : uv \in L \}$$

Example: $S \rightarrow \epsilon | aSb$

Lookahead Sets

Arithmetics:
For $\alpha \in (N \cup T)^*$ we are interested in the set:

$$\text{First}_1(\alpha) = \text{First}_1(\{ w \in T^* | \alpha \rightarrow^* w \})$$

Idea: Treat ϵ separately: $\text{First}_1(\epsilon) = \{ \epsilon \}$

Definition: 1-concatenation
Let $L_1, L_2 \subseteq T \cup \{ \epsilon \}$ with $L_1 \neq \emptyset \neq L_2$. Then:

$$L_1 \sqcap L_2 = \begin{cases} L_1 \cup L_2 & \text{if } \epsilon \notin L_1 \\ L_1 \cup L_2 & \text{otherwise} \end{cases}$$

If all rules of G are productive, then all sets $\text{First}_1(A)$ are non-empty.

Lookahead Sets

Fast Computation of Lookahead Sets

Observation:
The form of each inequality of these systems is:

$$x \sqcup y \text{ resp. } x \sqcap d$$

for variables x, y and $d \in D$

Such systems are called pure unification problems
Such problems can be solved in linear space/time.

for example:

$$\begin{align*}
x_1 \geq 1 & \quad (a) \\
x_2 \geq 2 & \quad (b) \\
x_3 \geq 3 & \quad (c) \\
x_3 \geq 2 & \quad (d)
\end{align*}$$
Fast Computation of Lookahead Sets

... for our example grammar:
First_1:

Left Recursion

Theorem:

Proof:

Case 1: \(\beta \Rightarrow^* \epsilon \) — Contradiction
Case 2: \(\beta \Rightarrow^* \epsilon \) — Contradiction

Idea 1: Rewrite the rules from \(G \) to \(\tilde{G} \):

Example: Arithmetic Expressions (cont'd)

Fast Computation of Lookahead Sets

Proceeding:

- Create the Variable Dependency Graph for the inequality system,
- Within a Strongly Connected Component (\(-\) Tarjan) all variables have the same value,
- Is there no incoming edge for an SCC, its value is computed via the smallest upper bound of all values within the SCC,
- In case of incoming edges, their values are also to be considered for the upper bound

Item Pushdown Automaton as LL(1)-Parser

Is \(G \) an LL(1)-grammar, we can index a lookahead-table with items and nonterminals:

LL(1)-Lookahead Table

We set \(M[u,v] = i \) with \(B \rightarrow v \) if \(u \in \text{First}_1(\gamma) \cap \text{Follow}_1(\delta) \)

... for example:

\[
S \rightarrow S \; \Rightarrow \; S \rightarrow b \; \mid \; aSb \\
\text{First}_1(S) = \{a, b\} \quad \text{Follow}_1(S) = \{b, \}$
\]

S-rule 0: \(\text{First}_1(S) \cap \text{Follow}_1(S) = \{b, \}$
S-rule 1: \(\text{First}_1(aSb) \cap \text{Follow}_1(S) = \{a\}$

Lookahead table:

Item Pushdown Automaton as LL(1)-Parser

Recurring scheme in programming languages: Lists of sth...

Within a Strongly Connected Component (\(-\) Tarjan) all variables have the same value:

- Is there no incoming edge for an SCC, its value is computed via the smallest upper bound of all values within the SCC,
- In case of incoming edges, their values are also to be considered for the upper bound

Item Pushdown Automaton as LL(1)-Parser

Inequality system for \(\text{Follow}_1(\delta) = \text{First}_1(\gamma) \cap \text{Follow}_1(\delta) \)

Create the Variable Dependency Graph for the inequality system.

Item Pushdown Automaton as LL(1)-Parser

Fast Computation of Lookahead Sets

... for our example grammar:
First_1:

Left Recursion

Theorem:

Proof:

Case 1: \(\beta \Rightarrow^* \epsilon \) — Contradiction
Case 2: \(\beta \Rightarrow^* \epsilon \) — Contradiction

Idea 1: Rewrite the rules from \(G \) to \(\tilde{G} \):

Example: Arithmetic Expressions (cont'd)

Fast Computation of Lookahead Sets

Proceeding:

- Create the Variable Dependency Graph for the inequality system,
- Within a Strongly Connected Component (\(-\) Tarjan) all variables have the same value,
- Is there no incoming edge for an SCC, its value is computed via the smallest upper bound of all values within the SCC,
- In case of incoming edges, their values are also to be considered for the upper bound

Item Pushdown Automaton as LL(1)-Parser

Is \(G \) an LL(1)-grammar, we can index a lookahead-table with items and nonterminals:

LL(1)-Lookahead Table

We set \(M[u,v] = i \) with \(B \rightarrow v \) if \(u \in \text{First}_1(\gamma) \cap \text{Follow}_1(\delta) \)

... for example:

\[
S \rightarrow S \; \Rightarrow \; S \rightarrow b \; \mid \; aSb \\
\text{First}_1(S) = \{a, b\} \quad \text{Follow}_1(S) = \{b, \}$
\]

S-rule 0: \(\text{First}_1(S) \cap \text{Follow}_1(S) = \{b, \}$
S-rule 1: \(\text{First}_1(aSb) \cap \text{Follow}_1(S) = \{a\}$

Lookahead table:

Item Pushdown Automaton as LL(1)-Parser

Recurring scheme in programming languages: Lists of sth...

Within a Strongly Connected Component (\(-\) Tarjan) all variables have the same value:

- Is there no incoming edge for an SCC, its value is computed via the smallest upper bound of all values within the SCC,
- In case of incoming edges, their values are also to be considered for the upper bound

Item Pushdown Automaton as LL(1)-Parser

Inequality system for \(\text{Follow}_1(\delta) = \text{First}_1(\gamma) \cap \text{Follow}_1(\delta) \)

Create the Variable Dependency Graph for the inequality system.

Item Pushdown Automaton as LL(1)-Parser

Fast Computation of Lookahead Sets

... for our example grammar:
First_1:

Left Recursion

Theorem:

Proof:

Case 1: \(\beta \Rightarrow^* \epsilon \) — Contradiction
Case 2: \(\beta \Rightarrow^* \epsilon \) — Contradiction

Idea 1: Rewrite the rules from \(G \) to \(\tilde{G} \):

Example: Arithmetic Expressions (cont'd)

Fast Computation of Lookahead Sets

Proceeding:

- Create the Variable Dependency Graph for the inequality system,
- Within a Strongly Connected Component (\(-\) Tarjan) all variables have the same value,
- Is there no incoming edge for an SCC, its value is computed via the smallest upper bound of all values within the SCC,
- In case of incoming edges, their values are also to be considered for the upper bound

Item Pushdown Automaton as LL(1)-Parser

Is \(G \) an LL(1)-grammar, we can index a lookahead-table with items and nonterminals:

LL(1)-Lookahead Table

We set \(M[u,v] = i \) with \(B \rightarrow v \) if \(u \in \text{First}_1(\gamma) \cap \text{Follow}_1(\delta) \)

... for example:

\[
S \rightarrow S \; \Rightarrow \; S \rightarrow b \; \mid \; aSb \\
\text{First}_1(S) = \{a, b\} \quad \text{Follow}_1(S) = \{b, \}$
\]

S-rule 0: \(\text{First}_1(S) \cap \text{Follow}_1(S) = \{b, \}$
S-rule 1: \(\text{First}_1(aSb) \cap \text{Follow}_1(S) = \{a\}$

Lookahead table:

Item Pushdown Automaton as LL(1)-Parser

Recurring scheme in programming languages: Lists of sth...

Within a Strongly Connected Component (\(-\) Tarjan) all variables have the same value:

- Is there no incoming edge for an SCC, its value is computed via the smallest upper bound of all values within the SCC,
- In case of incoming edges, their values are also to be considered for the upper bound

Item Pushdown Automaton as LL(1)-Parser

Inequality system for \(\text{Follow}_1(\delta) = \text{First}_1(\gamma) \cap \text{Follow}_1(\delta) \)

Create the Variable Dependency Graph for the inequality system.
Idea 2: Recursive Descent RLL Parsers:

For each $A \rightarrow \alpha \in P$, we introduce:

```cpp
void A(){
generate(\alpha)
}
```

with the meta-program `generate` being defined by structural decomposition of α:

```cpp
generate(\alpha_1 \ldots \alpha_k) = generate(\alpha_1)
generate(\alpha) = next = scan()
generate(A) = A();
generate(\epsilon) = ;
generate(r_k) = while (next \in F_\epsilon(r_k)) {
generate(r_k)
}
generate(r_1 | \ldots | r_k) = \ldots generate(r_k) break ;
``` 

labels({\alpha_1, \ldots, \alpha_m}) = label(\alpha_1): \ldots label(\alpha_m):

- label(\alpha) = case \alpha
- label(\epsilon) = default

Discussion

Recursive descent RLL(1)-parsers are an alternative to table-driven parsers; apart from the usual function `scan()`, we generate a program frame with the lookahead function `expect()` and the main parsing method `parse()`:

```cpp
int next;
void expect(Set E){
    if ((next) \in E) {
        cerr << "Expected " << E << " found" << next;
        exit(0);
    }
    return ;
}
void parse(){
    next = scan();
    expect(First(\epsilon));
    S();
    expect([EOF]);
}
```

Top-down Parsing

Discussion

- A practical implementation of an RLL(1)-parser via recursive descent is a straight-forward idea.
- However, only a subset of the deterministic context-free languages can be parsed this way.
- As soon as `First()` sets are not disjoint any more,
 - Solution 1: For many accessibility written grammars, the alternation between right hand sides happens too early. Keeping the common prefixes of right hand sides joined and introducing a new production for the actual diverging sentence forms often helps.
 - Solution 2: Introduce `ranked` grammars, and decide conflicting lookahead always in favour of the higher ranked alternative.
- Solution 3: Going from `left to right`.
 - The size of the occurring sets is rapidly increasing with larger k.
 - Unfortunately, even `ranked` parsers are not sufficient to accept all deterministic context-free languages.
- In practical systems, this often motivates the implementation of $k = 1$ only ...