Topic:
Semantic Analysis
Semantic Analysis

Scanner and parser accept programs with correct syntax.

- not all programs that are syntactically correct make *sense*
Semantic Analysis

Scanner and parser accept programs with correct syntax.
- not all programs that are syntactically correct make sense
- the compiler may be able to recognize some of these
 - these programs are rejected and reported as erroneous
 - the language definition defines what erroneous means
Scanner and parser accept programs with correct syntax.
- not all programs that are syntactically correct make \textit{sense}
- the compiler may be able to \textit{recognize} some of these
 - these programs are rejected and reported as \textit{erroneous}
 - the language definition defines what \textit{erroneous} means
- \textbf{semantic} analyses are necessary that, for instance:
 - check that \textit{identifiers} are known and where they are defined
 - check the \textit{type}-correct use of variables
Semantic Analysis

Scanner and parser accept programs with correct syntax.

- not all programs that are syntactically correct make sense
- the compiler may be able to recognize some of these
 - these programs are rejected and reported as erroneous
 - the language definition defines what erroneous means

- semantic analyses are necessary that, for instance:
 - check that identifiers are known and where they are defined
 - check the type-correct use of variables

- semantic analyses are also useful to
 - find possibilities to “optimize” the program
 - warn about possibly incorrect programs
Scanner and parser accept programs with correct syntax.

- not all programs that are syntactically correct make sense
- the compiler may be able to recognize some of these
 - these programs are rejected and reported as erroneous
 - the language definition defines what erroneous means

semantic analyses are necessary that, for instance:

- check that identifiers are known and where they are defined
- check the type-correct use of variables

semantic analyses are also useful to

- find possibilities to “optimize” the program
- warn about possibly incorrect programs

~~> a semantic analysis annotates the syntax tree with attributes
Chapter 1:
Attribute Grammars
Attribute Grammars

- Many computations of the semantic analysis as well as the code generation operate on the syntax tree.
- What is computed at a given node only depends on the type of that node (which is usually a non-terminal).
- We call this a *local* computation:
 - Only accesses already computed information from neighbouring nodes.
 - Computes new information for the current node and other neighbouring nodes.

Definition attribute grammar

An attribute grammar is a CFG extended by a set of attributes for each non-terminal and terminal. Local attribute equations.

In order to be able to evaluate the attribute equations, all attributes mentioned in that equation have to be evaluated already; the nodes of the syntax tree need to be visited in a certain sequence.
Attribute Grammars

- many computations of the semantic analysis as well as the code generation operate on the syntax tree
- what is computed at a given node only depends on the type of that node (which is usually a non-terminal)
- we call this a local computation:
 - only accesses already computed information from neighbouring nodes
 - computes new information for the current node and other neighbouring nodes

Definition attribute grammar

An **attribute grammar** is a CFG extended by
- a set of attributes for each non-terminal and terminal
- local attribute equations
Attribute Grammars

- many computations of the semantic analysis as well as the code generation operate on the syntax tree
- what is computed at a given node only depends on the type of that node (which is usually a non-terminal)
- we call this a local computation:
 - only accesses already computed information from neighbouring nodes
 - computes new information for the current node and other neighbouring nodes

Definition attribute grammar

An attribute grammar is a CFG extended by

- a set of attributes for each non-terminal and terminal
- local attribute equations

- in order to be able to evaluate the attribute equations, all attributes mentioned in that equation have to be evaluated already
- the nodes of the syntax tree need to be visited in a certain sequence
Example: Computation of the empty \[r \] Attribute

Consider the syntax tree of the regular expression \((a|b)^*a(a|b)\):
Example: Computation of the emptyr Attribute

Consider the syntax tree of the regular expression $(a|b)^*a(a|b)$:

```
     r
    / \  
   *   .
   /   /
  f   f
 |   /
f   f
|   /
0   1
a   b
  / \
 f   f
|   /
2   f
a   a
  / \
3   f
b   b
  / \
 f   f
|   /
4   
 b  
```
Example: Computation of the empty \[r \] Attribute

Consider the syntax tree of the regular expression \((a|b)^*a(a|b)\):
Example: Computation of the empty \([r]\) Attribute

Consider the syntax tree of the regular expression \((a|b)^*a(a|b)\):
Example: Computation of the $\text{empty}[^r]$ Attribute

Consider the syntax tree of the regular expression $(a|b)^*a(a|b)$:

\sim equations for $\text{empty}[^r]$ are computed from bottom to top (aka bottom-up)
Implementation Strategy

- attach an attribute `empty` to every node of the syntax tree
- compute the attributes in a *depth-first post-order* traversal:
 - at a leaf, we can compute the value of `empty` without considering other nodes
 - the attribute of an inner node only depends on the attribute of its children
- the `empty` attribute is a *synthesized* attribute
Implementation Strategy

- attach an attribute \textit{empty} to every node of the syntax tree
- compute the attributes in a \textit{depth-first post-order} traversal:
 - at a leaf, we can compute the value of \textit{empty} without considering other nodes
 - the attribute of an inner node only depends on the attribute of its children
- the \textit{empty} attribute is a \textit{synthesized} attribute

in general:

\textbf{Definition}

An attribute at \(N \) is called
- \textit{inherited} if its value is defined in terms of attributes of \(N \)'s parent, siblings and/or \(N \) itself (root \(\leftrightarrow \) leaves)
- \textit{synthesized} if its value is defined in terms of attributes of \(N \)'s children and/or \(N \) itself (leaves \(\rightarrow \) root)
Example: Attribute Equations for empty

In order to compute an attribute \textit{locally}, specify attribute equations for each node:
Example: Attribute Equations for empty

In order to compute an attribute *locally*, specify attribute equations for each node depending on the *type* of the node:

In the Example from earlier, we did that intuitively:

for leaves: \(r \equiv i x \) we define \(\text{empty}[r] = (x \equiv \epsilon) \).

otherwise:

\[
\begin{align*}
\text{empty}[r_1 | r_2] &= \text{empty}[r_1] \lor \text{empty}[r_2] \\
\text{empty}[r_1 \cdot r_2] &= \text{empty}[r_1] \land \text{empty}[r_2] \\
\text{empty}[r_1^*] &= t \\
\text{empty}[r_1?] &= t
\end{align*}
\]
In general, for establishing attribute systems we need a flexible way to refer to parents and children: We use consecutive indices to refer to neighbouring attributes:

- \(\text{attribute}_k[0] \): the attribute of the current root node
- \(\text{attribute}_k[i] \): the attribute of the \(i \)-th child (\(i > 0 \))
General Attribute Systems

In general, for establishing attribute systems we need a flexible way to refer to parents and children:

We use consecutive indices to refer to neighbouring attributes

\[\text{attribute}_k[0]: \text{the attribute of the current root node} \]
\[\text{attribute}_k[i]: \text{the attribute of the } i\text{-th child } \ (i > 0) \]

... the example, now in general formalization:

\[
\begin{align*}
x & : \text{empty}[0] := (x \equiv \epsilon) \\
| & : \text{empty}[0] := \text{empty}[1] \lor \text{empty}[2] \\
\cdot & : \text{empty}[0] := \text{empty}[1] \land \text{empty}[2] \\
\ast & : \text{empty}[0] := t \\
? & : \text{empty}[0] := t
\end{align*}
\]
Observations

- the *local* attribute equations need to be evaluated using a *global* algorithm that knows about the dependencies of the equations
- in order to construct this algorithm, we need
 1. a sequence in which the nodes of the tree are visited
 2. a sequence within each node in which the equations are evaluated
- this *evaluation strategy* has to be compatible with the *dependencies* between attributes
Observations

- the *local* attribute equations need to be evaluated using a *global* algorithm that knows about the dependencies of the equations
- in order to construct this algorithm, we need
 1. a sequence in which the nodes of the tree are visited
 2. a sequence within each node in which the equations are evaluated
- this *evaluation strategy* has to be compatible with the *dependencies* between attributes

We visualize the attribute dependencies $D(p)$ of a production p in a *Local Dependency Graph*:

Let $p = N_0 \xrightarrow{} N_1 | N_2$ in

$$D(p) = \{ (empty[1], empty[0]),
 (empty[2], empty[0]) \}$$

\rightsquigarrow arrows point in the direction of information flow
Observations

- In order to infer an evaluation strategy, it is not enough to consider the local attribute dependencies at each node.
- The evaluation strategy must also depend on the global dependencies, that is, on the information flow between nodes.
Observations

- in order to infer an evaluation strategy, it is not enough to consider the *local* attribute dependencies at each node
- the evaluation strategy must also depend on the *global* dependencies, that is, on the information flow between nodes

⚠️ the global dependencies change with each particular syntax tree
- in the example, the parent node is always depending on children only
 - a depth-first post-order traversal is possible
- in general, variable dependencies can be much *more complex*
Simultaneous Computation of Multiple Attributes

Computing \textit{empty, first, next} from regular expressions:

\[
\begin{align*}
S \rightarrow E : & \quad \text{empty}[0] := \text{empty}[1] \\
& \quad \text{first}[0] := \text{first}[1] \\
& \quad \text{next}[1] := \emptyset \\
\end{align*}
\]

\[
\begin{align*}
E \rightarrow x : & \quad \text{empty}[0] := (x \equiv \epsilon) \\
& \quad \text{first}[0] := \{ x \mid x \neq \epsilon \}
\end{align*}
\]

\[D(S \rightarrow E) = \{ (\text{empty}[1], \text{empty}[0]), (\text{first}[1], \text{first}[0]) \}\]

\[D(E \rightarrow x) = \{ \} \]
Regular Expressions: Rules for Alternative

\[E \rightarrow E | E \] :
- \(\text{empty}[0] := \text{empty}[1] \lor \text{empty}[2] \)
- \(\text{first}[0] := \text{first}[1] \cup \text{first}[2] \)
- \(\text{next}[1] := \text{next}[0] \)
- \(\text{next}[2] := \text{next}[0] \)

\[D(E \rightarrow E | E) : \]

\[D(E \rightarrow E | E) = \{ \begin{array}{l}
(\text{empty}[1], \text{empty}[0]), \\
(\text{empty}[2], \text{empty}[0]), \\
(\text{first}[1], \text{first}[0]), \\
(\text{first}[2], \text{first}[0]), \\
(\text{next}[0], \text{next}[2]), \\
(\text{next}[0], \text{next}[1])
\end{array} \} \]
Regular Expressions: Rules for Concatenation

\[
E \rightarrow E \cdot E
\]

:
\[
\begin{align*}
\text{empty}[0] & := \text{empty}[1] \land \text{empty}[2] \\
\text{first}[0] & := \text{first}[1] \cup (\text{empty}[1] ? \text{first}[2] : \emptyset) \\
\text{next}[1] & := \text{first}[2] \cup (\text{empty}[2] ? \text{next}[0] : \emptyset) \\
\text{next}[2] & := \text{next}[0]
\end{align*}
\]

\[
D(E \rightarrow E \cdot E)
\]

:
\[
D(E \rightarrow E \cdot E) = \{(\text{empty}[1], \text{empty}[0]), (\text{empty}[2], \text{empty}[0]), (\text{empty}[2], \text{next}[1]), (\text{empty}[1], \text{first}[0]), (\text{first}[1], \text{first}[0]), (\text{first}[2], \text{first}[0]), (\text{first}[2], \text{next}[1]), (\text{next}[0], \text{next}[2]), (\text{next}[0], \text{next}[1])\}
\]
Regular Expressions: Rules for Kleene-Star and Option

\[
E \rightarrow E^* : \begin{align*}
\text{empty}[0] & := t \\
\text{first}[0] & := \text{first}[1] \\
\text{next}[1] & := \text{first}[1] \cup \text{next}[0]
\end{align*}
\]

\[
D(E \rightarrow E^*) : \begin{array}{c}
f \\
\downarrow \\
f
\end{array}
\begin{array}{c}
e \\
\downarrow \\
e
\end{array}
\begin{array}{c}
* \\
\downarrow \\
n
\end{array}
\begin{array}{c}
f \\
\downarrow \\
n
\end{array}
\begin{array}{c}
e \\
\downarrow \\
e
\end{array}
\begin{array}{c}
E \\
\downarrow \\
n
\end{array}
\begin{array}{c}
f \\
\downarrow \\
e
\end{array}
\begin{array}{c}
E \\
\downarrow \\
n
\end{array}
\]

\[
D(E \rightarrow E^*) = \{(\text{first}[1], \text{first}[0]),
(\text{first}[1], \text{next}[2]),
(\text{next}[0], \text{next}[1])\}
\]

\[
E \rightarrow E? : \begin{align*}
\text{empty}[0] & := t \\
\text{first}[0] & := \text{first}[1] \\
\text{next}[1] & := \text{next}[0]
\end{align*}
\]

\[
D(E \rightarrow E?) : \begin{array}{c}
f \\
\downarrow \\
f
\end{array}
\begin{array}{c}
e \\
\downarrow \\
e
\end{array}
\begin{array}{c}
? \\
\downarrow \\
n
\end{array}
\begin{array}{c}
f \\
\downarrow \\
f
\end{array}
\begin{array}{c}
e \\
\downarrow \\
e
\end{array}
\begin{array}{c}
E \\
\downarrow \\
n
\end{array}
\begin{array}{c}
f \\
\downarrow \\
e
\end{array}
\begin{array}{c}
E \\
\downarrow \\
n
\end{array}
\]

\[
D(E \rightarrow E?) = \{(\text{first}[1], \text{first}[0]),
(\text{next}[0], \text{next}[1])\}
\]
Challenges for General Attribute Systems

Static evaluation
Is there a static evaluation strategy, which is generally applicable?

- an evaluation strategy can only exist, if for *any* derivation tree the dependencies between attributes are acyclic
- it is DEXPTIME-complete to check for cyclic dependencies

 [Jazayeri, Odgen, Rounds, 1975]
Challenges for General Attribute Systems

Static evaluation

Is there a static evaluation strategy, which is generally applicable?

- an evaluation strategy can only exist, if for any derivation tree the dependencies between attributes are acyclic
- it is DEXPTIME-complete to check for cyclic dependencies
 [Jazayeri, Odgen, Rounds, 1975]

Ideas

1. Let the User specify the strategy
2. Determine the strategy dynamically
3. Automate subclasses only
Idea: For all nonterminals X compute a set $\mathcal{R}(X)$ of relations between its attributes, as an overapproximation of the global dependencies between root attributes of every production for X.

Describe $\mathcal{R}(X)$s as sets of relations, similar to $D(p)$ by:
- setting up each production $X \rightarrow X_1 \ldots X_k$’s effect on the relations of $\mathcal{R}(X)$
- compute effect on all so far accumulated evaluations of each rhs X_i’s $\mathcal{R}(X_i)$
- iterate until stable
Subclass: Strongly Acyclic Attribute Dependencies

The 2-ary operator $L[i]$ re-decorates relations from L

$$L[i] = \{(a[i], b[i]) \mid (a, b) \in L\}$$
Subclass: Strongly Acyclic Attribute Dependencies

The 2-ary operator $L[i]$ re-decorates relations from L

$$L[i] = \{(a[i], b[i]) \mid (a, b) \in L\}$$
Subclass: Strongly Acyclic Attribute Dependencies

The 2-ary operator $L[i]$ re-decorates relations from L

$$L[i] = \{(a[i], b[i]) \mid (a, b) \in L\}$$

π_0 projects only onto relations between root elements only

$$\pi_0(S) = \{(a, b) \mid (a[0], b[0]) \in S\}$$
Subclass: Strongly Acyclic Attribute Dependencies

The 2-ary operator $L[i]$ re-decorates relations from L

$$L[i] = \{(a[i], b[i]) | (a, b) \in L\}$$

π_0 projects only onto relations between root elements only

$$\pi_0(S) = \{(a, b) | (a[0], b[0]) \in S\}$$
Subclass: Strongly Acyclic Attribute Dependencies

The 2-ary operator \(L[i] \) re-decorates relations from \(L \)

\[
L[i] = \{(a[i], b[i]) \mid (a, b) \in L\}
\]

\(\pi_0 \) projects only onto relations between root elements only

\[
\pi_0(S) = \{(a, b) \mid (a[0], b[0]) \in S\}
\]

\(\# \)… root-projects the transitive closure of relations from the \(L \)s and \(D \)

\[
\#(L_1, \ldots, L_k) = \pi_0((D(p) \cup L_1[1] \cup \ldots \cup L_k[k])^+)
\]
Subclass: Strongly Acyclic Attribute Dependencies

The 2-ary operator $L[i]$ re-decorates relations from L

$$L[i] = \{(a[i], b[i]) \mid (a, b) \in L\}$$

π_0 projects only onto relations between root elements only

$$\pi_0(S) = \{(a, b) \mid (a[0], b[0]) \in S\}$$

\ldots roots-projects the transitive closure of relations from the L_is and D

$$\llbracket p \rrbracket^\#(L_1, \ldots, L_k) = \pi_0((D(p) \cup L_1[1] \cup \ldots \cup L_k[k])^+)$$
The 2-ary operator $L[i]$ re-decorates relations from L

$$L[i] = \{(a[i], b[i]) \mid (a, b) \in L\}$$

π_0 projects only onto relations between root elements only

$$\pi_0(S) = \{(a, b) \mid (a[0], b[0]) \in S\}$$

$[.] \# \ldots$ root-projects the transitive closure of relations from the L_is and D

$$[p] \#(L_1, \ldots, L_k) = \pi_0((D(p) \cup L_1[1] \cup \ldots \cup L_k[k])^+)$$
Subclass: Strongly Acyclic Attribute Dependencies

The 2-ary operator $L[i]$ re-decorates relations from L

$$L[i] = \{(a[i],b[i]) \mid (a,b) \in L\}$$

π_0 projects only onto relations between root elements only

$$\pi_0(S) = \{(a, b) \mid (a[0], b[0]) \in S\}$$

\mathcal{R} maps symbols to relations (global attributes dependencies)

$$\mathcal{R}(X) \supseteq (\bigcup \{[p]^\#(\mathcal{R}(X_1), \ldots, \mathcal{R}(X_k)) \mid p : X \to X_1 \ldots X_k\})^+ \mid p \in P$$

$$\mathcal{R}(X) \supseteq \emptyset \quad | \quad X \in (N \cup T)$$
Subclass: Strongly Acyclic Attribute Dependencies

The 2-ary operator $L[i]$ re-decorates relations from L

$$L[i] = \{(a[i], b[i]) \mid (a, b) \in L\}$$

π_0 projects only onto relations between root elements only

$$\pi_0(S) = \{(a, b) \mid (a[0], b[0]) \in S\}$$

$\#\ldots$ root-projects the transitive closure of relations from the L_i's and D

$$\#(L_1, \ldots, L_k) = \pi_0((D(p) \cup L_1[1] \cup \ldots \cup L_k[k])^+)$$

\mathcal{R} maps symbols to relations (global attributes dependencies)

$$\mathcal{R}(X) \supseteq (\bigcup\{\#(\mathcal{R}(X_1), \ldots, \mathcal{R}(X_k)) \mid p : X \rightarrow X_1 \ldots X_k\})^+ \mid p \in P$$

$$\mathcal{R}(X) \supseteq \emptyset \mid X \in (N \cup T)$$

Strongly Acyclic Grammars

The system of inequalities $\mathcal{R}(X)$

- characterizes the class of strongly acyclic Dependencies
- has a unique least solution $\mathcal{R}^*(X)$ (as $\#\ldots$ is monotonic)
Idea: we compute the least solution $\mathcal{R}^*(X)$ of $\mathcal{R}(X)$ by a fixpoint computation, starting from $\mathcal{R}(X) = \emptyset$.

Strongly Acyclic Grammars

If all $D(p) \cup \mathcal{R}^*(X_1)[1] \cup \ldots \cup \mathcal{R}^*(X_k)[k]$ are acyclic for all $p \in G$, G' is strongly acyclic.
Example: Strong Acyclic Test

Given grammar $S \rightarrow L$, $L \rightarrow a \mid b$. Dependency graphs D_p:
Example: Strong Acyclic Test

Start with computing $\mathcal{R}(L) = [L \rightarrow a]^\#(_) \sqcup [L \rightarrow b]^\#(_) :$

```
  h  i  L  j  k  h  i  L  j  k
 /     |     /     |     /
 a     b     a     b
```

terminal symbols do not contribute dependencies
Example: Strong Acyclic Test

Start with computing $R(L) = [L \to a]^\#() \sqcup [L \to b]^\#()$:

- terminal symbols do not contribute dependencies
- transitive closure of all relations in $(D(L \to a))^+$ and $(D(L \to b))^+$
Example: Strong Acyclic Test

Start with computing $R(L) = [L \rightarrow a]^{\#}() \sqcup [L \rightarrow b]^{\#}()$:

1. terminal symbols do not contribute dependencies
2. transitive closure of all relations in $(D(L \rightarrow a))^+$ and $(D(L \rightarrow b))^+$
3. apply π_0
Example: Strong Acyclic Test

Start with computing $\mathcal{R}(L) = \left[L \to a \right]^\#() \oplus \left[L \to b \right]^\#()$:

- terminal symbols do not contribute dependencies
- transitive closure of all relations in $(D(L \to a))^+$ and $(D(L \to b))^+$
- apply π_0
- $\mathcal{R}(L) = \{(k, j), (i, h)\}$
Example: Strong Acyclic Test

Continue with $\mathcal{R}(S) = \left[S \rightarrow L \right] \# (\mathcal{R}(L))$:

1. re-decorate and embed $\mathcal{R}(L)[1]$
Example: Strong Acyclic Test

Continue with $\mathcal{R}(S) = \left[S \rightarrow L \right]^{\#} (\mathcal{R}(L))$:

![Graph diagram]

- Re-decorate and embed $\mathcal{R}(L)[1]$
- Transitive closure of all relations $(D(S \rightarrow L) \cup \{(k[1], j[1])\} \cup \{(i[1], h[1])\})^+$

Check for cycles!
Example: Strong Acyclic Test

Continue with $R(S) = [S \rightarrow L]^{\#}(R(L))$:

\[\begin{align*}
\text{h} & \quad \text{s} & \quad \text{j}
\end{align*} \]

1. re-decorate and embed $R(L)[1]$
2. transitive closure of all relations $(D(S \rightarrow L) \cup \{(k[1], j[1])\} \cup \{(i[1], h[1])\})^+$
3. apply π_0
Example: Strong Acyclic Test

Continue with $R(S) = \left[[S \rightarrow L]\right]^\#(R(L))$:

$\begin{align*}
&h & S & j
\end{align*}$

1. re-decorate and embed $R(L)[1]$
2. transitive closure of all relations $(D(S \rightarrow L) \cup \{(k[1], j[1])\} \cup \{(i[1], h[1])\})^+$
3. apply π_0
4. $R(S) = \{\}$
Strong Acyclic and Acyclic

The grammar \(S \rightarrow L, \quad L \rightarrow a \mid b \) has only two derivation trees which are both \textit{acyclic}:

It is \textit{not strongly acyclic} since the over-approximated global dependence graph for the non-terminal \(L \) contributes to a cycle when computing \(\mathcal{R}(S) \):
Possible strategies:

1. let the *user* define the evaluation order
Possible strategies:

1. let the *user* define the evaluation order
2. *automatic* strategy based on the dependencies
Possible strategies:

1. let the *user* define the evaluation order
2. *automatic* strategy based on the dependencies
3. consider a *fixed* strategy and only allow an attribute system that can be evaluated using this strategy
Linear Order from Dependency Partial Order

Possible *automatic* strategies:
Possible *automatic* strategies:

- **demand-driven evaluation**
 - start with the evaluation of any required attribute
 - if the equation for this attribute relies on as-of-yet unevaluated attributes, evaluate these recursively
Possible *automatic* strategies:

- **demand-driven evaluation**
 - start with the evaluation of any required attribute
 - if the equation for this attribute relies on as-of-yet unevaluated attributes, evaluate these recursively

- **evaluation in passes**
 - for each pass, pre-compute a global strategy to visit the *nodes* together with a local strategy for evaluation *within each node* type
 - *minimize* the number of *visits* to each node
Example: Demand-Driven Evaluation

Compute next at leaves a_2, a_3 and b_4 in the expression $(a|b)^* a(a|b)$:

\begin{align*}
| & : & \text{next}[1] & := & \text{next}[0] \\
& & \text{next}[2] & := & \text{next}[0] \\
\cdot & : & \text{next}[1] & := & \text{first}[2] \cup (\text{empty}[2] \ ? \ \text{next}[0]: \emptyset) \\
& & \text{next}[2] & := & \text{next}[0]
\end{align*}
Example: Demand-Driven Evaluation

Compute \texttt{next} at leaves \(a_2, a_3\) and \(b_4\) in the expression \((a|b) \ast a(a|b)\):

\[
| \quad : \quad \text{next}[1] := \text{next}[0] \\
\text{next}[2] := \text{next}[0]
\]

\[
\cdot \quad : \quad \text{next}[1] := \text{first}[2] \cup (\text{empty}[2] \ ? \text{next}[0]: \emptyset) \\
\text{next}[2] := \text{next}[0]
\]
Example: Demand-Driven Evaluation

Compute `next` at leaves a_2, a_3, and b_4 in the expression $(a|b)^* a(a|b)$:

\[
\begin{align*}
| & : & \text{next}[1] & := & \text{next}[0] \\
& & \text{next}[2] & := & \text{next}[0] \\
\cdot & : & \text{next}[1] & := & \text{first}[2] \cup (\text{empty}[2] ? \text{next}[0] : \emptyset) \\
& & \text{next}[2] & := & \text{next}[0]
\end{align*}
\]
Demand-Driven Evaluation

Observations

- each node must contain a pointer to its parent
- *only required* attributes are evaluated
- the evaluation sequence depends – in general – on the actual syntax tree
- the algorithm must track which attributes it has already evaluated
- the algorithm may visit nodes more often than necessary

→ the algorithm is *not local*
Demand-Driven Evaluation

Observations

- each node must contain a pointer to its parent
- *only required* attributes are evaluated
- the evaluation sequence depends – in general – on the actual syntax tree
- the algorithm must track which attributes it has already evaluated
- the algorithm may visit nodes more often than necessary

\[\Rightarrow\] the algorithm is *not local*

in principle:

- evaluation strategy is dynamic: difficult to debug
- usually all attributes in all nodes are required

\[\Rightarrow\] computation of all attributes is often cheaper
Demand-Driven Evaluation

Observations

- each node must contain a pointer to its parent
- *only required* attributes are evaluated
- the evaluation sequence depends – in general – on the actual syntax tree
- the algorithm must track which attributes it has already evaluated
- the algorithm may visit nodes more often than necessary

→ the algorithm is *not local*

in principle:
- evaluation strategy is dynamic: difficult to debug
- usually all attributes in all nodes are required

→ computation of all attributes is often cheaper
→ perform evaluation in *passes*
Implementing State

Problem: In many cases some sort of state is required.

Example: numbering the leafs of a syntax tree
Example: Implementing Numbering of Leafs

Idea:
- use helper attributes `pre` and `post`
- in `pre` we pass the value for the first leaf down (inherited attribute)
- in `post` we pass the value of the last leaf up (synthesized attribute)

```
root:   pre[0]  :=  0
       pre[1]  :=  pre[0]
       post[0] :=  post[1]

node:  pre[1]  :=  pre[0]
       post[0] :=  post[2]

leaf:  post[0] :=  pre[0] + 1
```
The attribute system is apparently strongly acyclic.
L-Attribution

- the attribute system is apparently strongly acyclic
- each node computes
 - the inherited attributes before descending into a child node (corresponding to a pre-order traversal)
 - the synthesized attributes after returning from a child node (corresponding to post-order traversal)
the attribute system is apparently strongly acyclic

each node computes

- the inherited attributes before descending into a child node (corresponding to a pre-order traversal)
- the synthesized attributes after returning from a child node (corresponding to post-order traversal)

Definition L-Attributed Grammars

An attribute system is L-attributed, if for all productions $S \rightarrow S_1 \ldots S_n$ every inherited attribute of S_j where $1 \leq j \leq n$ only depends on

- the attributes of $S_1, S_2, \ldots S_{j-1}$ and
- the inherited attributes of S.
L-Attributation

Background:
- the attributes of an \(L \)-attributed grammar can be evaluated during parsing
- important if no syntax tree is required or if error messages should be emitted while parsing
- example: pocket calculator
L-Attributation

Background:
- the attributes of an L-attributed grammar can be evaluated during parsing
- important if no syntax tree is required or if error messages should be emitted while parsing
- example: pocket calculator

L-attributed grammars have a fixed evaluation strategy:
a single \textit{depth-first} traversal

- in general: partition all attributes into $A = A_1 \cup \ldots \cup A_n$ such that for all attributes in A_i
 - the attribute system is L-attributed
- perform a \textit{depth-first} traversal for each attribute set A_i

\textit{⇒} craft attribute system in a way that they can be partitioned into few L-attributed sets
Practical Applications

- symbol tables, type checking/inference, and simple code generation can all be specified using L-attributed grammars
Practical Applications

- symbol tables, type checking/inference, and simple code generation can all be specified using L-attributed grammars.
- most applications *annotate* syntax trees with additional information.
Practical Applications

- symbol tables, type checking/inference, and simple code generation can all be specified using L-attributed grammars
- most applications annotate syntax trees with additional information
- the nodes in a syntax tree usually have different types that depend on the non-terminal that the node represents
Practical Applications

- symbol tables, type checking/inference, and simple code generation can all be specified using L-attributed grammars
- most applications *annotate* syntax trees with additional information
- the nodes in a syntax tree usually have different *types* that depend on the non-terminal that the node represents
 - the different types of non-terminals are characterized by the set of attributes with which they are decorated
Practical Applications

- symbol tables, type checking/inference, and simple code generation can all be specified using L-attributed grammars
- most applications annotate syntax trees with additional information
- the nodes in a syntax tree usually have different types that depend on the non-terminal that the node represents

\[\rightsquigarrow \text{the different types of non-terminals are characterized by the set of attributes with which they are decorated}\]

Example: Def-Use Analysis

- a statement may have two attributes containing valid identifiers: one ingoing (inherited) set and one outgoing (synthesised) set
- an expression only has an ingoing set
Implementation of Attribute Systems via a Visitor

- class with a method for every non-terminal in the grammar

  ```java
  public abstract class Regex {
    public abstract void accept(Visitor v);
  }
  ```

- attribute-evaluation works via pre-order / post-order callbacks

  ```java
  public interface Visitor {
    default void pre(OrEx re) {} 
    default void pre(AndEx re) {} 
    ...
    default void post(OrEx re) {} 
    default void post(AndEx re) {} 
  }
  ```

- we pre-define a depth-first traversal of the syntax tree

  ```java
  public class OrEx extends Regex {
    Regex l,r;
    public void accept(Visitor v) {
      v.pre(this);l.accept(v);v.inter(this);
      r.accept(v); v.post(this);
    }
  }
  ```
Example: Leaf Numbering

```java
public abstract class AbstractVisitor implements Visitor {
    public void pre (OrEx re){ pr(re); }
    public void pre (AndEx re){ pr(re); }
    ... /* redirecting to default handler for bin exprs */
    public void post(OrEx re){ po(re); }
    public void post(AndEx re){ po(re); }
    abstract void po(BinEx re);
    abstract void in(BinEx re);
    abstract void pr(BinEx re);
}

public class LeafNum extends AbstractVisitor {
    public Map<Regex,Integer> pre = new HashMap<>();
    public Map<Regex,Integer> post = new HashMap<>();
    public LeafNum (Regex r) { pre .put(r,0); r.accept(this); }
    public void pre(Const r) { post.put(r, pre .get(r)+1); }
    public void pr (BinEx r) { pre .put(r.l, pre .get(r)); }
    public void in (BinEx r) { pre .put(r.r, post.get(r.l)); }
    public void po (BinEx r) { post.put(r, post.get(r.r)); }
}
```
Chapter 2:
Decl-Use Analysis
Symbol Bindings and Visibility

Consider the following Java code:

```java
void foo() {
    int a;
    while (true) {
        double a;  // each declaration of a variable v causes memory allocation for v
        a = 0.5;
        write(a);
        break;
    }
    a = 2;
    bar();
    write(a);
}
```

- each *declaration* of a variable `v` causes memory allocation for `v`
- using `v` requires knowledge about its memory location
 - determine the declaration `v` is *bound* to
- a binding is not *visible* when a local declaration of the same name is in scope

 in the example the definition of `a` is shadowed by the *local definition* in the loop body
Scope of Identifiers

```c
void foo() {
    int A;
    while (true) {
        double A;
        A = 0.5;
        write(A);
        break;
    }
    A = 2;
    bar();
    write(A);
}
```

Scope of int A
void foo() {
 int A;
 while (true) {
 double A;
 A = 0.5;
 write(A);
 break;
 }
 A = 2;
 bar();
 write(A);
}

scope of double A
void foo() {
 int A;
 while (true) {
 double A;
 A = 0.5;
 write(A);
 break;
 }
 A = 2;
 bar();
 write(A);
}

administration of identifiers can be quite complicated...
Resolving Identifiers

Observation: each identifier in the AST must be translated into a memory access
Resolving Identifiers

Observation: each identifier in the AST must be translated into a memory access

Problem: for each identifier, find out what memory needs to be accessed by providing rapid access to its declaration

Idea:

1. rapid access: replace every identifier by a unique integer
2. integers as keys: comparisons of integers is faster
Resolving Identifiers

Observation: each identifier in the AST must be translated into a memory access

Problem: for each identifier, find out what memory needs to be accessed by providing rapid access to its declaration

Idea:

1. rapid access: replace every identifier by a unique integer
 → integers as keys: comparisons of integers is faster

2. link each usage of a variable to the declaration of that variable
 → for languages without explicit declarations, create declarations when a variable is first encountered
Rapid Access: Replace Strings with Integers

Idea for Algorithm:

- **Input:** a sequence of strings
- **Output:**
 - sequence of numbers
 - table that allows to retrieve the string that corresponds to a number

Apply this algorithm on each identifier during **scanning**.

Implementation approach:

- count the number of new-found identifiers in `int count`
- maintain a **hashtable** $S : \text{String} \rightarrow \text{int}$ to remember numbers for known identifiers

We thus define the function:

```c
int indexForIdentifier(String w) {
    if (S(w) ≡ undefined) {
        S = S ⊕ \{w \mapsto count\};
        return count++;
    } else return S(w);
}
```
Implementation: Hashtables for Strings

allocate an array M of sufficient size m

choose a hash function $H : \text{String} \rightarrow [0, m - 1]$ with:

- $H(w)$ is cheap to compute
- H distributes the occurring words equally over $[0, m - 1]$

Possible generic choices for sequence types ($\vec{x} = \langle x_0, \ldots, x_{r-1} \rangle$):

\[
\begin{align*}
H_0(\vec{x}) &= (x_0 + x_{r-1}) \mod m \\
H_1(\vec{x}) &= (\sum_{i=0}^{r-1} x_i \cdot p^i) \mod m \\
&= (x_0 + p \cdot (x_1 + p \cdot (\ldots + p \cdot x_{r-1} \ldots))) \mod m
\end{align*}
\]

for some prime number p (e.g. 31)

✗ The hash value of w may not be unique!

→ Append (w, i) to a linked list located at $M[H(w)]$

Finding the index for w, we compare w with all x for which $H(w) = H(x)$

✓ access on average:

insert: $O(1)$
lookup: $O(1)$
Example: Replacing Strings with Integers

Input:
Peter Piper picked a peck of pickled peppers
If Peter Piper picked a peck of pickled peppers
wheres the peck of pickled peppers Peter Piper picked

Output:
Example: Replacing Strings with Integers

Input:

<table>
<thead>
<tr>
<th>Peter</th>
<th>Piper</th>
<th>picked</th>
<th>a</th>
<th>peck</th>
<th>of</th>
<th>pickled</th>
<th>peppers</th>
</tr>
</thead>
<tbody>
<tr>
<td>If</td>
<td>Peter</td>
<td>Piper</td>
<td>picked</td>
<td>a</td>
<td>peck</td>
<td>of</td>
<td>pickled</td>
</tr>
<tr>
<td>wheres</td>
<td>the</td>
<td>peck</td>
<td>of</td>
<td>pickled</td>
<td>peppers</td>
<td>Peter</td>
<td>Piper</td>
</tr>
</tbody>
</table>

Output:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>9</td>
<td>10</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>
Example: Replacing Strings with Integers

Input:

<table>
<thead>
<tr>
<th>Peter</th>
<th>Piper</th>
<th>picked</th>
<th>a</th>
<th>peck</th>
<th>of</th>
<th>pickled</th>
<th>peppers</th>
</tr>
</thead>
<tbody>
<tr>
<td>If</td>
<td>Peter</td>
<td>Piper</td>
<td>picked</td>
<td>a</td>
<td>peck</td>
<td>of</td>
<td>pickled</td>
</tr>
<tr>
<td>wheres</td>
<td>the</td>
<td>peck</td>
<td>of</td>
<td>pickled</td>
<td>peppers</td>
<td>Peter</td>
<td>Piper</td>
</tr>
</tbody>
</table>

Output:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>9</td>
<td>10</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

and

<table>
<thead>
<tr>
<th>0</th>
<th>Peter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Piper</td>
</tr>
<tr>
<td>2</td>
<td>picked</td>
</tr>
<tr>
<td>3</td>
<td>a</td>
</tr>
<tr>
<td>4</td>
<td>peck</td>
</tr>
<tr>
<td>5</td>
<td>of</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>pickled</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>peppers</td>
</tr>
<tr>
<td>8</td>
<td>If</td>
</tr>
<tr>
<td>9</td>
<td>wheres</td>
</tr>
<tr>
<td>10</td>
<td>the</td>
</tr>
</tbody>
</table>

Hashtable with $m = 7$ and H_0:

```
If 8 the 10
```

```
pickled 6 peck 4 picked 2
of 5 wheres 9 peppers 7
```

```
Piper 1 Peter 0 a 3
```

40/67
Check for the correct usage of variables:

- Traverse the syntax tree in a suitable sequence, such that
 - each declaration is visited before its use
 - the currently visible declaration is the last one visited

 \[\rightarrow \text{perfect for an L-attributed grammar} \]

- for each identifier, we manage a \textit{stack} of declarations
 1. if we visit a \textit{declaration}, we push it onto the stack of its identifier
 2. upon leaving the \textit{scope}, we remove it from the stack

- if we visit a \textit{usage} of an identifier, we pick the top-most declaration from its stack
- if the stack of the identifier is empty, we have found an undeclared identifier
Example: Decl-Use Analysis via Table of Stacks

```c
void f()
{
    int a, b;
    b = 5;
    if (b>3) {
        int a, c;
        a = 3;
        c = a + 1;
        b = c;
    }
    else {
        int c;
        c = a + 1;
        b = c;
    }
    b = a + b;
}
```

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td></td>
</tr>
</tbody>
</table>
Example: Decl-Use Analysis via Table of Stacks

```c
void f()
{
    int a, b;
    b = 5;
    if (b>3) {
        int a, c;
        a = 3;
        c = a + 1;
        b = c;
    } else {
        int c;
        c = a + 1;
        b = c;
    }
    b = a + b;
}
```

```plaintext
 0 a
 1 b
 2 c
```

42 / 67
Example: Decl-Use Analysis via Table of Stacks

```c
void f()
{
    int a, b;
    b = 5;
    if (b > 3) {
        int a, c;
        a = 3;  //
        c = a + 1;
        b = c;
    } else {
        int c;
        c = a + 1;
        b = c;
    }
    b = a + b;
}
```

<table>
<thead>
<tr>
<th>0</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>b</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
</tr>
</tbody>
</table>

42/67
Example: Decl-Use Analysis via Table of Stacks

```c
void f()
{
    int a, b;
    b = 5;
    if (b>3) {
        int a, c;
        a = 3;
        c = a + 1;
        b = c;
    } else {
        int c;
        c = a + 1;  \<=>
        b = c;
    }
    b = a + b;
}
```

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>b</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>11</td>
</tr>
</tbody>
</table>
Example: Decl-Use Analysis via Table of Stacks

```c
void f()
{
    int a, b;
    b = 5;
    if (b>3) {
        int a, c;
        a = 3;
        c = a + 1;
        b = c;
    } else {
        int c;
        c = a + 1;
        b = c;
    }
    b = a + b;  \(\leftarrow\)
}
```

```plaintext
<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>b</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td></td>
</tr>
</tbody>
</table>
```

\(\leftarrow\)
Example: Decl-Use Analysis via Table of Stacks

```c
void f()
{
    int a, b;
    b = 5;
    if (b>3) {
        int a, c;
        a = 3;
        c = a + 1;
        b = c;
    } else {
        int c;
        c = a + 1;
        b = c;
    }
    b = a + b;
}
```
Example: Decl-Use Analysis via Table of Stacks

```c
void f()
{
    int a, b;
    b = 5;
    if (b>3) {
        int a, c;
        a = 3;
        c = a + 1;
        b = c;
    } else {
        int c;
        c = a + 1;
        b = c;
    }
    b = a + b;
}
```

- **d** declaration
- **b** basic block
- **a** assignment
Example: Decl-Use Analysis via Table of Stacks

```c
void f()
{
    int a, b;
    b = 5;
    if (b > 3) {
        int a, c;
        a = 3;
        c = a + 1;
        b = c;
    } else {
        int c;
        c = a + 1;
        b = c;
    }
    b = a + b;
}
```

d declaration node
b basic block
a assignment
when using a list to store the symbol table, storing a marker indicating the old head of
the list is sufficient

\begin{center}
\begin{tabular}{c}
\hline
a \\
\hline
b \\
\hline
\end{tabular}
\end{center}

in front of if-statement
Alternative Implementations for Symbol Tables

- when using a list to store the symbol table, storing a marker indicating the old head of the list is sufficient

```
  a
 /|
/  |
 a  c
 /|
/  |
 a  b
```

in front of if-statement then-branch
Alternative Implementations for Symbol Tables

- When using a list to store the symbol table, storing a marker indicating the old head of the list is sufficient.

\[
\begin{array}{ll}
\text{a} & \text{a} \\
\text{b} & \text{c} \\
\text{a} & \text{a} \\
\text{b} & \text{b}
\end{array}
\]

- In front of if-statement: in the then-branch and else-branch.
Alternative Implementations for Symbol Tables

- When using a list to store the symbol table, storing a marker indicating the old head of the list is sufficient.

 ![Diagram showing list structure]

 - in front of if-statement
 - then-branch
 - else-branch

- Instead of lists of symbols, it is possible to use a list of hash tables, more efficient in large, shallow programs.

 ![Diagram showing hash table structure]
Alternative Implementations for Symbol Tables

- when using a list to store the symbol table, storing a marker indicating the old head of the list is sufficient

- instead of lists of symbols, it is possible to use a list of hash tables → more efficient in large, shallow programs

- an even more elegant solution: persistent trees (updates return fresh trees with references to the old tree where possible)

 → a persistent tree t can be passed down into a basic block where new elements may be added, yielding a t'; after examining the basic block, the analysis proceeds with the unchanged old t
Chapter 3:
Type Checking
In most mainstream (imperative / object oriented / functional) programming languages, variables and functions have a fixed type. For example: `int, void*, struct { int x; int y; }`.
In most mainstream (imperative / object oriented / functional) programming languages, variables and functions have a fixed type. For example: `int, void*, struct { int x; int y; }`.

Types are useful to
- manage memory
- to avoid certain run-time errors
In most mainstream (imperative / object oriented / functional) programming languages, variables and functions have a fixed type. For example: `int, void*, struct { int x; int y; }`. Types are useful to:
- manage memory
- to avoid certain run-time errors

In imperative and object-oriented programming languages a declaration has to specify a type. The compiler then checks for a type correct use of the declared entity.
Type Expressions

Types are given using type-\textit{expressions}. The set of type expressions T contains:

1. **base types**: \texttt{int, char, float, void, ...}
2. **type constructors** that can be applied to other types

\textbf{Example for type constructors in C:}

- \texttt{structures:}
 \begin{verbatim}
 struct {
 t \texttt{a1};
 ...t \texttt{ak};
 }
 \end{verbatim}

- \texttt{pointers:}
 \begin{verbatim}
 t *
 \end{verbatim}

- \texttt{arrays:}
 \begin{verbatim}
 t[]
 \end{verbatim}
 The size of an array can be specified.
 The variable to be declared is written between t and $[n]$.

- \texttt{functions:}
 \begin{verbatim}
 t (t \texttt{t1},...,t \texttt{tk})
 \end{verbatim}
 The variable to be declared is written between t and $(t \texttt{t1},...,t \texttt{tk})$.

- In ML, function types are written as:
 \begin{verbatim}
 t1 * ... * tk \rightarrow t
 \end{verbatim}
Type Expressions

Types are given using type-expressions. The set of type expressions T contains:

1. **base types**: `int`, `char`, `float`, `void`, ...
2. **type constructors** that can be applied to other types

example for type constructors in C:

- **structures**: `struct` { t_1 a_1; ... t_k a_k; }
- **pointers**: t *
- **arrays**: t []
 - the size of an array can be specified
 - the variable to be declared is written between t and $[n]$
- **functions**: t (t_1, ...; t_k)
 - the variable to be declared is written between t and (t_1, ...; t_k)
 - in ML function types are written as: t_1 * ... * t_k \rightarrow t
Problem:

Given: A set of type declarations $\Gamma = \{ t_1 \ x_1; \ldots t_m \ x_m; \}$

Check: Can an expression e be given the type t?
Type Checking

Problem:

Given: A set of type declarations \(\Gamma = \{ t_1 x_1; \ldots t_m x_m; \} \)

Check: Can an expression \(e \) be given the type \(t \)?

Example:

```c
struct list { int info; struct list* next; };
int f(struct list* l) { return l; };
struct { struct list* c; }* b;
int* a[11];
```

Consider the expression:

\[*a[f(b->c)] + 2; \]
Type Checking using the Syntax Tree

Check the expression \(*a[f(b\rightarrow c)] + 2 \):

```
2
a
f
c
b
+ ∗ [ ]
( )
. *
c
b
```

Idea:
- traverse the syntax tree **bottom-up**
- for each identifier, we lookup its type in \(\Gamma \)
- constants such as 2 or 0.5 have a fixed type
- the types of the inner nodes of the tree are deduced using **typing rules**
Type Systems

Formally: consider *judgements* of the form:

\[\Gamma \vdash e : t \]

// (in the type environment \(\Gamma \) the expression \(e \) has type \(t \))

Axioms:

- **Const**: \(\Gamma \vdash c : t_c \) \((t_c \) type of constant \(c) \)
- **Var**: \(\Gamma \vdash x : \Gamma(x) \) \((x \) Variable)

Rules:

- **Ref**: \(\frac{\Gamma \vdash e : t}{\Gamma \vdash \& e : t^*} \)
- **Deref**: \(\frac{\Gamma \vdash e : t^*}{\Gamma \vdash *e : t} \)
Type Systems for C-like Languages

More rules for typing an expression:

Array:

\[
\Gamma \vdash e_1 : t \times \Gamma \vdash e_2 : \text{int} \\
\Gamma \vdash e_1[e_2] : t
\]

Array:

\[
\Gamma \vdash e_1 : t[\] \Gamma \vdash e_2 : \text{int} \\
\Gamma \vdash e_1[e_2] : t
\]

Struct:

\[
\Gamma \vdash e : \text{struct} \{ t_1 a_1; \ldots t_m a_m; \} \\
\Gamma \vdash e.a_i : t_i
\]

App:

\[
\Gamma \vdash e \colon t(t_1, \ldots, t_m) \Gamma \vdash e_1 : t_1 \ldots \Gamma \vdash e_m : t_m \\
\Gamma \vdash e(e_1, \ldots, e_m) : t
\]

Op □:

\[
\Gamma \vdash e_1 : t \Gamma \vdash e_2 : t \\
\Gamma \vdash e_1 \Box e_2 : t
\]

Op =:

\[
\Gamma \vdash e_1 : t_1 \Gamma \vdash e_2 : t_2 \quad t_2 \text{ can be converted to } t_1 \\
\Gamma \vdash e_1 = e_2 : t_1
\]

Explicit Cast:

\[
\Gamma \vdash e : t_2 \quad t_2 \text{ can be converted to } t_1 \\
\Gamma \vdash (t_1) e : t_1
\]
Type Systems for C-like Languages

More rules for typing an expression: with subtyping relation \leq

Array:

$\Gamma \vdash e_1 : t \ast \quad \Gamma \vdash e_2 : \text{int}$

$\Gamma \vdash e_1[e_2] : t$

$\Gamma \vdash e_1 : t[\] \quad \Gamma \vdash e_2 : \text{int}$

$\Gamma \vdash e_1[e_2] : t$

Struct:

$\Gamma \vdash e : \text{struct} \{ t_1 a_1; \ldots t_m a_m; \}$

$\Gamma \vdash e.a_i : t_i$

App:

$\Gamma \vdash e : t(t_1, \ldots, t_m) \quad \Gamma \vdash e_1 : t_1 \ldots \quad \Gamma \vdash e_m : t_m$

$\Gamma \vdash e(e_1, \ldots, e_m) : t$

Op \square:

$\Gamma \vdash e_1 : t_1 \quad \Gamma \vdash e_2 : t_2$

$\Gamma \vdash e_1 \square e_2 : t_1 \sqcup t_2$

Op $\ = $:

$\Gamma \vdash e_1 : t_1 \quad \Gamma \vdash e_2 : t_2 \quad t_2 \leq t_1$

$\Gamma \vdash e_1 = e_2 : t_1$

$\Gamma \vdash e : t_2 \quad t_2 \leq t_1$

Explicit Cast:

$\Gamma \vdash (t_1) e : t_1$
Example: Type Checking

Given expression \(\ast a[f(b\rightarrow c)] + 2 \) and
\[
\Gamma = \{
\begin{align*}
\text{struct list} & \{ \text{int info}; \text{struct list}\ast \text{next} \}; \\
\text{int} & f(\text{struct list}\ast \text{l}); \\
\text{struct} & \{ \text{struct list}\ast \text{c}; \}\ast \text{b}; \\
\text{int}\ast & a[11];
\end{align*}
\}
Example: Type Checking – More formally:

\[\Gamma = \{ \]

```
struct list { int info; struct list* next; };
int f(struct list* l);
struct { struct list* c;}* b;
int* a[11];
```

\[\Gamma \vdash b : \text{struct}\{\text{struct list *c;}\}* \\
\Gamma \vdash *b : \text{struct}\{\text{struct list *c;}\} \\
\Gamma \vdash (\ast b).c : \text{struct list} \\
\Gamma \vdash a : \text{int *[}11\text{]} \\
\Gamma \vdash f : _{\text{int}}(\text{struct list}) \\
\Gamma \vdash (\ast b).c : t \\
\Gamma \vdash a[f(b \rightarrow c)] : t \\
\Gamma \vdash a[f(b \rightarrow c)] + 2 : t \\
\Gamma \vdash 2 : t \\
\Gamma \vdash \ast a[f(b \rightarrow c)] + 2 : t \\
```

\[ \}

\text{but what do we do with} \leq?\]
Example: Type Checking – More formally:

\[ \Gamma = \{ \]

\begin{align*}
& \text{struct list \{ int info; struct list* next; \};} \\
& \text{int } f(\text{struct list* l}); \\
& \text{struct \{ struct list* c; \}* b; } \\
& \text{int* a[11]; } \\
& \} 
\end{align*}

\[
\begin{array}{c}
\text{VAR} \\
\Gamma \vdash a : \\
\text{ARRAY} \\
\hline
\text{VAR} \\
\Gamma \vdash f : _{(t)} \\
\text{APP} \\
\Gamma \vdash f(b \rightarrow c) : \text{int} \\
\text{DEREF} \\
\Gamma \vdash a[f(b \rightarrow c)] : \\
\text{OP} \\
\Gamma \vdash *a[f(b \rightarrow c)] : t \\
\text{CONST} \\
\Gamma \vdash 2 : t \\
\end{array}
\]

\[
\begin{array}{c}
\Gamma \vdash a[f(b \rightarrow c)] + 2 : t \\
\end{array}
\]
Example: Type Checking – More formally:

\[ \Gamma = \{ \]

```c
struct list { int info; struct list* next; };
int f(struct list* l);
struct { struct list* c; }* b;
int* a[11];
```

\[ \}\]

\( \Gamma \vdash b : \text{struct}\{\text{struct list *c};\}\ast \)

\( \Gamma \vdash \ast b : \text{struct}\{\text{struct list *c};\}\ast \)

\( \Gamma \vdash (\ast b).c : \text{struct list} \star \)

\( \Gamma \vdash a : \text{int} \ast \)

\( \Gamma \vdash f : (_) (t) \)

\( \Gamma \vdash f(b \rightarrow c) : \text{int} \)

\( \Gamma \vdash a[f(b \rightarrow c)] : \)

\( \Gamma \vdash \ast a[f(b \rightarrow c)] : t \)

\( \Gamma \vdash \ast a[f(b \rightarrow c)] + 2 : t \)

\( \Gamma \vdash 2 : t \)

\( \Gamma \vdash \ast a[f(b \rightarrow c)] + 2 : t \)
Example: Type Checking – More formally:

\[\Gamma = \{\}\]

\[
\begin{align*}
\text{struct list} & \{ \text{int info; struct list* next;} \}; \\
\text{int } & \text{f(struct list* l);} \\
\text{struct} & \{ \text{struct list* c;}\} \ast b; \\
\text{int*} & \text{a[11];}
\end{align*}
\]

\[
\begin{array}{ll}
\text{VAR} & \Gamma \vdash b : \text{struct\{struct list* c;}\} \ast \\
\text{DEREF} & \Gamma \vdash *b : \\
\text{STRUCT} & \Gamma \vdash (*b).c :
\end{array}
\]

\[
\begin{array}{ll}
\text{VAR} & \Gamma \vdash a : \\
\text{ARRAY} & \Gamma \vdash a : \\
\text{VAR} & \Gamma \vdash f : \_ (t) \\
\text{APP} & \Gamma \vdash f(b \rightarrow c) : \text{int} \\
& \Gamma \vdash a[f(b \rightarrow c)] :
\end{array}
\]

\[
\begin{array}{ll}
\text{DEREF} & \Gamma \vdash a[f(b \rightarrow c)] : \\
\text{OP} & \Gamma \vdash *a[f(b \rightarrow c)] : t \\
\text{CONST} & \Gamma \vdash 2 : t \\
& \Gamma \vdash *a[f(b \rightarrow c)] + 2 : t
\end{array}
\]
Example: Type Checking – More formally:

\[
\Gamma = \{
\text{struct list } \{ \text{int info; struct list* next; } \};
\text{int } f(\text{struct list* } l);
\text{struct } \{ \text{struct list* c;}\}^{*} b;
\text{int}^{*} a[11];
\}
\]

\[
\begin{align*}
\text{VAR} & \quad \Gamma \vdash b : \text{struct}\{\text{struct list}^{*}\text{c;}\}^{*} \\
\text{DEREF} & \quad \Gamma \vdash *b : \text{struct}\{\text{struct list}^{*}\text{c;}\} \\
\text{STRUCT} & \quad \Gamma \vdash (*b).c : \\
\hline
\text{VAR} & \quad \Gamma \vdash a : \\
\text{ARRAY} & \quad \Gamma \vdash a \vdash a[f(b \rightarrow c)] : \\
\text{APP} & \quad \Gamma \vdash f : \_\(t\) \quad \Gamma \vdash (*b).c : t \\
\hline
\text{DEREF} & \quad \Gamma \vdash a[f(b \rightarrow c)] : \\
\text{OP} & \quad \Gamma \vdash *a[f(b \rightarrow c)] : t \\
\text{CONST} & \quad \Gamma \vdash 2 : t \\
\hline
\end{align*}
\]

but what do we do with \( \leq \)?
Example: Type Checking – More formally:

\[ \Gamma = \{ \]

\begin{align*}
\text{struct} & \quad \text{list} \{ \text{int} \ \text{info}; \ \text{struct} \ \text{list}^* \ \text{next}; \}; \\
\text{int} & \quad f(\text{struct} \ \text{list}^* \ l); \\
\text{struct} & \quad \{ \ \text{struct} \ \text{list}^* \ c;}\}^* \ b; \\
\text{int}^* & \quad a[11]; \\
\} \]

\[ \begin{array}{c}
\text{VAR} \quad \Gamma \vdash b : \text{struct}\{\text{struct} \ \text{list}^* \ c;}\}^* \\
\text{DEREF} \quad \Gamma \vdash *b : \text{struct}\{\text{struct} \ \text{list}^* \ c;}\}
\end{array} \]

\[ \begin{array}{c}
\text{STRUCT} \quad \Gamma \vdash (\text{*b}).c : \text{struct} \ \text{list}^* \\
\text{VAR} \quad \Gamma \vdash a : \\
\text{ARRAY} \quad \Gamma \vdash f : \_\text{(struct list}^*) \\
\text{APP} \quad \Gamma \vdash f(b \rightarrow c) : \text{int} \\
\end{array} \]

\[ \begin{array}{c}
\Gamma \vdash a[f(b \rightarrow c)] : \\
\text{DEREF} \quad \Gamma \vdash *a[f(b \rightarrow c)] : t \\
\text{CONST} \quad \Gamma \vdash 2 : t \\
\end{array} \]

\[ \Gamma \vdash *a[f(b \rightarrow c)] + 2 : t \]
Example: Type Checking – More formally:

\[ \Gamma = \{
\]

\[
\text{struct }\text{ list } \{ \text{int } \text{info;} \text{ struct } \text{ list* next;} \};
\]

\[
\text{int } f(\text{struct } \text{list* l});
\]

\[
\text{struct } \{ \text{struct } \text{list* c;}\}* \text{ b};
\]

\[
\text{int* a[11];}
\]

\[
\}
\]

\[
\begin{align*}
\Gamma ⊢ b : \text{struct}\{\text{struct list* c;}\}* \\
\Gamma ⊢ *b : \text{struct}\{\text{struct list* c;}\} \\
\Gamma ⊢ (*b).c : \text{struct list*}
\end{align*}
\]

\[
\begin{align*}
\Gamma ⊢ f : \text{int(\text{struct list*})} & \quad \checkmark \quad \Gamma ⊢ (*b).c : \text{struct list*} \\
\Gamma ⊢ f(b \rightarrow c) : \text{int} & \quad \checkmark \\
\Gamma ⊢ a[f(b \rightarrow c)] :
\end{align*}
\]

\[
\begin{align*}
\Gamma ⊢ a[f(b \rightarrow c)] : \\
\Gamma ⊢ *a[f(b \rightarrow c)] : t \\
\Gamma ⊢ 2 : t \\
\Gamma ⊢ *a[f(b \rightarrow c)] + 2 : t
\end{align*}
\]
Example: Type Checking – More formally:

\[
\begin{align*}
\Gamma &= \{
\text{struct list \{ int info; \textbf{struct} list* next; \};}
\text{int } f(\textbf{struct list* } l);
\text{struct \{ \textbf{struct list* c;\}}* b;
\text{int* } a[11];
\}
\end{align*}
\]
Example: Type Checking – More formally:

\[ \Gamma = \{ \]

```c
struct list { int info; struct list* next; };
int f(struct list* l);
struct { struct list* c;}* b;
int* a[11];
```

```c
}\]

\[\Gamma \vdash b : \text{struct}\{\text{struct list *c; }\} *\]

\[\Gamma \vdash *b : \text{struct}\{\text{struct list *c;}\} *\]

\[\Gamma \vdash (\ast b).c : \text{struct list} *\]

\[\Gamma \vdash a : \text{int}[*]\]

\[\Gamma \vdash f : \text{int (struct list} *) \]\n
\[\Gamma \vdash f(b \rightarrow c) : \text{int} \]

\[\Gamma \vdash a[f(b \rightarrow c)] : \text{int} *\]

\[\Gamma \vdash a[f(b \rightarrow c)] : \text{int} *\]

\[\Gamma \vdash *a[f(b \rightarrow c)] : t \]

\[\Gamma \vdash *a[f(b \rightarrow c)] + 2 : t \]

\[\Gamma \vdash 2 : t \]
Example: Type Checking – More formally:

$$\Gamma = \{$$

```c
struct list { int info; struct list* next; };
int f(struct list* l);
struct { struct list* c; }* b;
int* a[11];
```

$$\}$$

$$\begin{align*}
\Gamma \vdash b : \text{struct}\{\text{struct list }^*c;\}^*
\hline
\text{DEREF} \\
\Gamma \vdash *b : \text{struct}\{\text{struct list }^*c;\}
\hline
\Gamma \vdash (*b).c : \text{struct list}^*
\end{align*}$$

$$\begin{align*}
\Gamma \vdash a : \text{int}[\]
\hline
\text{ARRAY} \\
\Gamma \vdash f : \text{int}(\text{struct list}^*)^\checkmark
\hline
\text{APP} \\
\Gamma \vdash f(b \rightarrow c) : \text{int}^\checkmark
\hline
\Gamma \vdash a[f(b \rightarrow c)] : \text{int}^*
\end{align*}$$

$$\begin{align*}
\Gamma \vdash a[f(b \rightarrow c)] : \text{int}^*
\hline
\text{DEREF} \\
\Gamma \vdash *a[f(b \rightarrow c)] : \text{int}
\hline
\text{OP} \\
\Gamma \vdash *a[f(b \rightarrow c)] + 2 : t
\end{align*}$$

$$\begin{align*}
\Gamma \vdash 2 : t
\hline
\text{CONST} \\
\Gamma \vdash \text{const}
\end{align*}$$
Example: Type Checking – More formally:

\[\Gamma = \{ \]

\[
\text{struct } \text{list} \{ \text{int} \text{ info}; \text{struct } \text{list}^* \text{ next}; \};
\]

\[
\text{int} \ f(\text{struct } \text{list}^* \ l);
\]

\[
\text{struct} \{ \text{struct } \text{list}^* \text{ c};\}^* \ b;
\]

\[
\text{int}^* \ a[11];
\]

\[
\} \]

\[
\begin{array}{c}
\text{VAR} \quad \Gamma \vdash b : \text{struct}\{\text{struct list}^* \text{ c};\}^*\\
\text{DEREF} \quad \Gamma \vdash \ast b : \text{struct}\{\text{struct list}^* \text{ c};\}\\
\text{STRUCT} \quad \Gamma \vdash (\ast b).c : \text{struct list}^*
\end{array}
\]

\[
\begin{array}{c}
\text{VAR} \quad \Gamma \vdash a : \text{int}^[]\\
\text{ARRAY} \quad \Gamma \vdash a[f(b \rightarrow c)] : \text{int}^*
\end{array}
\]

\[
\begin{array}{c}
\text{VAR} \quad \Gamma \vdash f : \text{int}\{\text{struct list}^*\} \checkmark \\
\text{APP} \quad \Gamma \vdash f(b \rightarrow c) : \text{int} \checkmark \\
\text{DEREF} \quad \Gamma \vdash \ast a[f(b \rightarrow c)] : \text{int}
\end{array}
\]

\[
\begin{array}{c}
\text{OP} \quad \Gamma \vdash *a[f(b \rightarrow c)] + 2 : \text{int}
\end{array}
\]

\[
\begin{array}{c}
\text{CONST} \quad \Gamma \vdash 2 : \text{int} \checkmark
\end{array}
\]
Example: Type Checking – More formally:

\(\Gamma = \{ \)

```c
struct list { int info; struct list* next; };
int f(struct list* l);
struct { struct list* c; }* b;
int* a[11];
```

\(\}

\(\quad \text{VAR} \quad \) \(\frac{\text{VAR} \quad \Gamma \vdash b : \text{struct}{\text{struct list }^*c;}^*}{\text{DEREF} \quad \Gamma \vdash *b : \text{struct}{\text{struct list }^*c;}^*}
\)

\(\quad \text{STRUCT} \quad \) \(\frac{\text{VAR} \quad \Gamma \vdash *b : \text{struct}{\text{struct list }^*c;}^* \quad \text{VAR} \quad \Gamma \vdash (\text{f}(\text{b } \to \text{c})).c : \text{struct list}*}{\Gamma \vdash (\text{f}(\text{b } \to \text{c})).c : \text{struct list}^*}
\)

\(\quad \text{ARRAY} \quad \) \(\frac{\text{VAR} \quad \Gamma \vdash a : \text{int}^*}{\Gamma \vdash a[f(b \to c)] : \text{int}^*}
\)

\(\quad \text{APP} \quad \) \(\frac{\text{VAR} \quad \Gamma \vdash f : \text{int(}\text{struct list}^*) \quad \Gamma \vdash (\text{f}(\text{b } \to \text{c})).c : \text{struct list}^*}{\Gamma \vdash f(b \to c) : \text{int} \checkmark}
\)

\(\quad \text{DEREF} \quad \) \(\frac{\text{DEREF} \quad \Gamma \vdash a[f(b \to c)] : \text{int}^*}{\Gamma \vdash *a[f(b \to c)] : \text{int} \checkmark}
\)

\(\quad \text{OP} \quad \) \(\frac{\text{COND} \quad \Gamma \vdash a[f(b \to c)] : \text{int}^*}{\Gamma \vdash a[f(b \to c)] + 2 : \text{int} \checkmark}
\)

but what do we do with \(\leq \)?
Equality of Types =

Summary of Type Checking

- Choosing which rule to apply at an AST node is determined by the type of the child nodes
- Determining the rule requires a check for \(\sim \) equality of types

Type equality in C:

- `struct A { }` and `struct B { }` are considered to be different
 - \(\sim \) the compiler could re-order the fields of \(A \) and \(B \) independently (not allowed in C)
 - To extend an record \(A \) with more fields, it has to be embedded into another record:

  ```c
  struct B {
    struct A;
    int field_of_B;
  } extension_of_A;
  ```

- After issuing `typedef int C;` the types \(C \) and \(int \) are the same
Structural Type Equality

Alternative interpretation of type equality (*does not hold in C*):

semantically, two types t_1, t_2 can be considered as *equal* if they accept the same set of access paths.

Example:

```c
struct list {
    int info;
    struct list* next;
}

struct list1 {
    int info;
    struct {
        int info;
        struct list1* next;
    }* next;
}
```

Consider declarations `struct list* l` and `struct list1* l`. Both allow

```
l->info  l->next->info
```

but the two declarations of `l` have unequal types in C.
Algorithm for Testing Structural Equality

Idea:

- track a set of equivalence queries of type expressions
- if two types are syntactically equal, we stop and report success
- otherwise, reduce the equivalence query to a several equivalence queries on (hopefully) simpler type expressions

Suppose that recursive types were introduced using type definitions:

```c
typedef A t
```

(we omit the Γ). Then define the following rules:
Rules for Well-Typedness

\[
\begin{align*}
\text{struct} \{ \text{int} \ \text{info}; \ A \ast \text{next}; \} & \quad B \\
\text{struct} \{ \text{int} \ \text{info}; \ A \ast \text{next}; \} & \quad \text{struct} \{ \text{int} \ \text{info}; \ldots \ast \text{next}; \} \\
\text{int} & \quad \text{int} & \quad A \ast \ldots \ast \\
\text{struct} \{ \text{int} \ \text{info}; \ B \ast \text{next}; \} & \quad A \\
\text{struct} \{ \text{int} \ \text{info}; \ A \ast \text{next}; \} & \quad \text{struct} \{ \text{int} \ \text{info}; \ B \ast \text{next}; \} \\
\text{int} & \quad \text{int} & \quad A \ast B \ast \\
\text{struct} \{ \text{int} \ \text{info}; \ A \ast \text{next}; \} & \quad B
\end{align*}
\]
Example:

typedef struct {int info; A * next; } A

typedef struct {int info; struct {int info; B * next; } * next; } B

We ask, for instance, if the following equality holds:

\[
\text{struct \{int info; A * next; \}} = B
\]

We construct the following deduction tree:
Proof for the Example:

typedef struct {int info; A ∗ next; }

typedef struct {int info; struct {int info; B ∗ next; } ∗ next; } B

(struct{int info; A ∗ next;} B)

(struct{int info; A ∗ next;} ∗ struct{int info; ... ∗ next; })

(int int)

A ∗ ... *

A ∗ struct{int info; B ∗ next; }

(struct{int info; A ∗ next;} ∗ struct{int info; B ∗ next; })

(int int)

A ∗ B *

A B

struct{int info; A ∗ next; } B
We implement a function that implements the equivalence query for two types by applying the deduction rules:

- if no deduction rule applies, then the two types are not equal
- if the deduction rule for expanding a type definition applies, the function is called recursively with a potentially larger type
- in case an equivalence query appears a second time, the types are equal by definition
We implement a function that implements the equivalence query for two types by applying the deduction rules:

- if no deduction rule applies, then the two types are *not equal*
- if the deduction rule for expanding a type definition applies, the function is called recursively with a *potentially larger* type
- in case an equivalence query appears a second time, the types are *equal by definition*

Termination

- the set D of all declared types is finite
- there are no more than $|D|^2$ different equivalence queries
- repeated queries for the same inputs are automatically satisfied

\Rightarrow termination is ensured
Subtyping ≤

On the arithmetic basic types \texttt{char}, \texttt{int}, \texttt{long}, etc. there exists a rich \textit{subtype} hierarchy

<table>
<thead>
<tr>
<th>Subtypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_1 \leq t_2$, means that the values of type t_1</td>
</tr>
<tr>
<td>1. form a \textit{subset} of the values of type t_2;</td>
</tr>
<tr>
<td>2. can be converted into a value of type t_2;</td>
</tr>
<tr>
<td>3. fulfill the requirements of type t_2;</td>
</tr>
<tr>
<td>4. are assignable to variables of type t_2.</td>
</tr>
</tbody>
</table>
Subtyping \leq

On the arithmetic basic types `char`, `int`, `long`, etc. there exists a rich subtype hierarchy.

Subtypes

$t_1 \leq t_2$, means that the values of type t_1

1. form a subset of the values of type t_2;
2. can be converted into a value of type t_2;
3. fulfill the requirements of type t_2;
4. are assignable to variables of type t_2.

Example:
assign smaller type (fewer values) to larger type (more values)

```plaintext
  t_1  x;
  t_2  y;
  y = x;
```
Subtyping ≤

On the arithmetic basic types \texttt{char, int, long}, etc. there exists a rich \textit{subtype} hierarchy

\begin{itemize}
 \item \(t_1 \leq t_2 \), means that the values of type \(t_1 \)
 \item form a \textit{subset} of the values of type \(t_2 \);
 \item can be converted into a value of type \(t_2 \);
 \item fulfill the requirements of type \(t_2 \);
 \item are assignable to variables of type \(t_2 \).
\end{itemize}

Example:
assign smaller type (fewer values) to larger type (more values)

\begin{verbatim}
t1 x;
t2 y;
y = x;
t1 \leq t2
\end{verbatim}
On the arithmetic basic types `char`, `int`, `long`, etc. there exists a rich *subtype* hierarchy.

Subtypes

\(t_1 \leq t_2 \), means that the values of type \(t_1 \)

1. form a *subset* of the values of type \(t_2 \);
2. can be converted into a value of type \(t_2 \);
3. fulfill the requirements of type \(t_2 \);
4. are assignable to variables of type \(t_2 \).

Example:

assign smaller type (fewer values) to larger type (more values)

```c
int x;
double y;
y = x;
int \leq double
```
Example: Subtyping

Extending the subtype relationship to more complex types, observe:

```c
string extractInfo( struct { string info; } x) {
    return x.info;
}
```

- we want `extractInfo` to be applicable to all argument structures that return a `string` typed field for accessor `info`
- the idea of subtyping on values is related to subclasses
- we use deduction rules to describe when $t_1 \leq t_2$ should hold…
Rules for Well-Typedness of Subtyping

\[
\begin{array}{c}
t \leq t' \\
\text{typedef } s A \\
\text{struct } \{ s_1 a_1; \ldots; s_j a_j; \} \\
\text{struct } \{ t_1 a_1; \ldots; t_k a_k; \} \\
\text{struct } \{ \text{int } u, \text{int } v \} & x; \\
\text{struct } \{ \text{int } u \} & y; \\
y = x;
\end{array}
\]
Rules and Examples for Subtyping

Examples:

<table>
<thead>
<tr>
<th>Structure 1</th>
<th>Structure 2</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>struct { int a; int b; }</code></td>
<td><code>struct { float a; }</code></td>
</tr>
<tr>
<td><code>int (int)</code></td>
<td><code>float (float)</code></td>
</tr>
<tr>
<td><code>int (float)</code></td>
<td><code>float (int)</code></td>
</tr>
</tbody>
</table>
Rules and Examples for Subtyping

Examples:

\[
\begin{align*}
\text{struct} & \{ \text{int} \ a; \ \text{int} \ b; \} \\
& \text{int} \ (\text{int}) \\
& \text{int} \ (\text{float}) \\
\text{struct} & \{ \text{float} \ a; \} \\
& \text{float} \ (\text{float}) \\
& \text{float} \ (\text{int})
\end{align*}
\]

Definition

Given two function types in subtype relation \(s_0(s_1, \ldots, s_n) \leq t_0(t_1, \ldots, t_n) \) then we have

- co-variance of the return type \(s_0 \leq t_0 \) and
- contra-variance of the arguments \(s_i \geq t_i \) für \(1 < i \leq n \)
Rules and Examples for Subtyping

\[s_0 (s_1, \ldots, s_m) \leq t_0 (t_1, \ldots, t_m) \]

Examples:

- `struct {int a; int b; } \leq struct {float a; }
- `int (int)` \not\leq `float (float)
- `int (float)` \leq `float (int)`

Definition

Given two function types in subtype relation \(s_0(s_1, \ldots s_n) \leq t_0(t_1, \ldots t_n) \) then we have

- **co-variance** of the return type \(s_0 \leq t_0 \) and
- **contra-variance** of the arguments \(s_i \geq t_i \) für \(1 < i \leq n \)
Subtypes: Application of Rules (I)

Check if $S_1 \leq R_1$:

- $R_1 = \text{struct} \{ \text{int} \ a; \ R_1 (R_1) \ f; \}$
- $S_1 = \text{struct} \{ \text{int} \ a; \ \text{int} \ b; \ S_1 (S_1) \ f; \}$
- $R_2 = \text{struct} \{ \text{int} \ a; \ R_2 (S_2) \ f; \}$
- $S_2 = \text{struct} \{ \text{int} \ a; \ \text{int} \ b; \ S_2 (R_2) \ f; \}$
Subtypes: Application of Rules (II)

Check if \(S_2 \leq S_1 \):

\[
R_1 = \text{struct} \{ \text{int } a; R_1 (R_1) f; \}
\]
\[
S_1 = \text{struct} \{ \text{int } a; \text{ int } b; S_1 (S_1) f; \}
\]
\[
R_2 = \text{struct} \{ \text{int } a; R_2 (S_2) f; \}
\]
\[
S_2 = \text{struct} \{ \text{int } a; \text{ int } b; S_2 (R_2) f; \}
\]
Subtypes: Application of Rules (III)

Check if $S_2 \leq R_1$:

$R_1 = \text{struct } \{ \text{int } a; \ R_1 (R_1) \ f; \}$

$S_1 = \text{struct } \{ \text{int } a; \ \text{int } b; \ S_1 (S_1) \ f; \}$

$R_2 = \text{struct } \{ \text{int } a; \ R_2 (S_2) \ f; \}$

$S_2 = \text{struct } \{ \text{int } a; \ \text{int } b; \ S_2 (R_2) \ f; \}$
for presentational purposes, proof trees are often abbreviated by omitting deductions within the tree

structural sub-types are very powerful and can be quite intricate to understand

Java generalizes structs to objects/classes where a sub-class A inheriting form base class O is a subtype $A \leq O$

subtype relations between classes must be explicitly declared