Motivation
Example: Simulation of a die by coins

Knuth & Yao die

Quiz

Is the probability of obtaining 3 equal to $\frac{1}{6}$?

Zhang (Saarland University, Germany) Quantitative Model Checking August 24th, 2009

Question:

What is the probability of obtaining 2?
Example: Simulation of a die by coins

Knuth & Yao die

Question:
- What is the probability of obtaining 2?
Definition:
A discrete-time Markov chain (DTMC) is a tuple \((S, P, \pi_0)\) where
- \(S\) is the set of states,
- \(P : S \times S \rightarrow [0, 1]\) with \(\sum_{s' \in S} P(s, s') = 1\) is the transitions matrix, and
- \(\pi_0 \in [0, 1]^{|S|}\) with \(\sum_{s \in S} \pi_0(s) = 1\) is the initial distribution.
Example: Craps

Two dice game:

- First: \(\sum \in \{7, 11\} \Rightarrow \text{win}, \ \sum \in \{2, 3, 12\} \Rightarrow \text{lose} \), else \(s = \sum \)
- Next rolls: \(\sum = s \Rightarrow \text{win}, \ \sum = 7 \Rightarrow \text{lose} \), else iterate

![Craps Diagram]
Example: Craps

Two dice game:

- First: $\sum \in \{7, 11\} \Rightarrow \text{win}$, $\sum \in \{2, 3, 12\} \Rightarrow \text{lose}$, else $s = \sum$
- Next rolls: $\sum = s \Rightarrow \text{win}$, $\sum = 7 \Rightarrow \text{lose}$, else iterate
Two dice game:

- First: $\sum \in \{7, 11\} \Rightarrow \text{win}$, $\sum \in \{2, 3, 12\} \Rightarrow \text{lose}$, else $s = \sum$
- Next rolls: $\sum = s \Rightarrow \text{win}$, $\sum = 7 \Rightarrow \text{lose}$, else iterate
Example: Zero Configuration Networking (Zeroconf)

- Previously: **Manual** assignment of IP addresses
- Zeroconf: **Dynamic** configuration of local IPv4 addresses
- Advantage: **Simple** devices able to communicate automatically

Automatic Private IP Addressing (APIPA) – RFC 3927

- Used when DHCP is **configured but unavailable**
- Pick randomly an address from 169.254.1.0 – 169.254.254.255
- Find out whether anybody else uses this address (by sending several ARP requests)

Model:

- Randomly pick an address among the K (65024) addresses.
- With m hosts in the network, collision probability is $q = \frac{m}{K}$.
- Send 4 ARP requests.
- In case of collision, the probability of no answer to the ARP request is p (due to the **lossy channel**).
Example: Zero Configuration Networking (Zeroconf)

For 100 hosts and $p = 0.001$, the probability of error is $\approx 1.55 \cdot 10^{-15}$.
What is probabilistic model checking?

- **Probabilistic** specifications, e.g. probability of reaching bad states shall be smaller than 0.01.
- Probabilistic model checking is an automatic verification technique for this purpose.

Why quantities?

- **Randomized** algorithms
- **Faults** e.g. due to the environment, lossy channels
- **Performance** analysis, e.g. reliability, availability
Basics of Probability Theory (Recap)
What are probabilities? - Intuition

Throwing a fair coin:

- The outcome head has a probability of 0.5.
- The outcome tail has a probability of 0.5.

But . . . [Bertrand's Paradox]

Draw a random chord on the unit circle. What is the probability that its length exceeds the length of a side of the equilateral triangle in the circle?

\[\frac{1}{3} \]
What are probabilities? - Intuition

Throwing a fair coin:

- The outcome head has a probability of 0.5.
- The outcome tail has a probability of 0.5.

But …[Bertrand’s Paradox]

Draw a random chord on the unit circle. What is the probability that its length exceeds the length of a side of the equilateral triangle in the circle?
What are probabilities? - Intuition

Throwing a fair coin:

- The outcome **head** has a probability of **0.5**.
- The outcome **tail** has a probability of **0.5**.

But ... *[Bertrand’s Paradox]*

Draw a random chord on the unit circle. What is the probability that its length exceeds the length of a side of the equilateral triangle in the circle?
What are probabilities? - Intuition

Throwing a fair coin:

- The outcome head has a probability of 0.5.
- The outcome tail has a probability of 0.5.

But … [Bertrand’s Paradox]

Draw a random chord on the unit circle. What is the probability that its length exceeds the length of a side of the equilateral triangle in the circle?

\[
\frac{1}{3} \quad \frac{1}{2} \quad \frac{1}{4}
\]
Definition: Probability Function
Given sample space Ω and σ-algebra \mathcal{F}, a probability function $P : \mathcal{F} \to [0, 1]$ satisfies:

- $P(A) \geq 0$ for $A \in \mathcal{F}$,
- $P(\Omega) = 1$, and
- $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$ for pairwise disjoint $A_i \in \mathcal{F}$

Definition: Probability Space
A probability space is a tuple (Ω, \mathcal{F}, P) with a sample space Ω, σ-algebra $\mathcal{F} \subseteq 2^\Omega$ and probability function P.

Example
A random real number taken uniformly from the interval $[0, 1]$.

- Sample space: $\Omega = [0, 1]$.
Definition: Probability Function
Given sample space Ω and σ-algebra \mathcal{F}, a probability function $P : \mathcal{F} \to [0, 1]$ satisfies:

- $P(A) \geq 0$ for $A \in \mathcal{F}$,
- $P(\Omega) = 1$, and
- $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$ for pairwise disjoint $A_i \in \mathcal{F}$

Definition: Probability Space
A probability space is a tuple (Ω, \mathcal{F}, P) with a sample space Ω, σ-algebra $\mathcal{F} \subseteq 2^\Omega$ and probability function P.

Example
A random real number taken uniformly from the interval $[0, 1]$.

- Sample space: $\Omega = [0, 1]$.
- σ-algebra: \mathcal{F} is the minimal superset of $\{[a, b] \mid 0 \leq a \leq b \leq 1\}$ closed under complementation and countable union.
- Probability function: $P([a, b]) = (b - a)$, by Carathéodory’s extension theorem there is a unique way how to extend it to all elements of \mathcal{F}.
Random Variables

```c
int getRandomNumber()
{
    return 4;    // chosen by fair dice roll.
    // guaranteed to be random.
}
```
Definition: Random Variable

A random variable X is a measurable function $X : \Omega \rightarrow I$ to some I. Elements of I are called random elements. Often $I = \mathbb{R}$:

$$X : \Omega \rightarrow \mathbb{R}$$

Example (Bernoulli Trials)

Throwing a coin 3 times: $\Omega_3 = \{hhh, hht, hth, htt, thh, tht, tth, ttt\}$. We define 3 random variables $X_i : \Omega \rightarrow \{h, t\}$. For all $x, y, z \in \{h, t\}$,

- $X_1(xyz) = x$,
- $X_2(xyz) = y$,
- $X_3(xyz) = z$.
Stochastic Processes and Markov Chains
Definition:
Given a probability space \((\Omega, \mathcal{F}, P)\), a stochastic process is a family of random variables

\[\{X_t \mid t \in T\} \]

defined on \((\Omega, \mathcal{F}, P)\). For each \(X_t\) we assume

\[X_t : \Omega \to S \]

where \(S = \{s_1, s_2, \ldots\}\) is a finite or countable set called state space.

A stochastic process \(\{X_t \mid t \in T\}\) is called

- **discrete-time** if \(T = \mathbb{N}\) or
- **continuous-time** if \(T = \mathbb{R}_{\geq 0}\).

For the following lectures we focus on discrete time.
Example: Weather Forecast

- $S = \{\text{sun}, \text{rain}\}$,
- we model time as discrete – a random variable for each day:
 - X_0 is the weather today,
 - X_i is the weather in i days.
- how can we set up the probability space to measure e.g. $P(X_i = \text{sun})$?
Let us fix a state space S. How can we construct the probability space (Ω, \mathcal{F}, P)?

Definition: Sample Space Ω

We define $\Omega = S^\infty$. Then, each X_n maps a sample $\omega = \omega_0\omega_1\ldots$ onto the respective state at time n, i.e.,

$$(X_n)(\omega) = \omega_n \in S.$$
Definition: Cylinder Set

For \(s_0 \cdots s_n \in S^{n+1} \), we set the cylinder \(C(s_0 \cdots s_n) = \{ s_0 \cdots s_n \omega \in \Omega \} \).

Example:
\(S = \{ s_1, s_2, s_3 \} \) and \(C(s_1s_3) \)

Definition: \(\sigma \)-algebra \(\mathcal{F} \)

We define \(\mathcal{F} \) to be the smallest \(\sigma \)-Algebra that contains all cylinder sets, i.e.,
\[
\{ C(s_0 \cdots s_n) \mid n \in \mathbb{N}, s_i \in S \} \subseteq \mathcal{F}.
\]

Check: Is each \(X_i \) measurable?
(on the discrete set \(S \) we assume the full \(\sigma \)-algebra \(2^S \)).
How to specify the probability Function P?
We only need to specify for each $s_0 \ldots s_n \in S^n$

$$P(C(s_0 \ldots s_n)).$$

This amounts to specifying

1. $P(C(s_0))$ for each $s_0 \in S$, and
2. $P(C(s_0 \ldots s_i) \mid C(s_0 \ldots s_{i-1}))$ for each $s_0 \ldots s_i \in S^i$

since

$$P(C(s_0 \ldots s_n)) = P(C(s_0 \ldots s_n) \mid C(s_0 \ldots s_{n-1})) \cdot P(C(s_0 \ldots s_{n-1}))$$

$$= P(C(s_0)) \cdot \prod_{i=1}^{n} P(C(s_0 \ldots s_i) \mid C(s_0 \ldots s_{i-1}))$$

Still, lots of possibilities...
How to specify the probability Function P?

We only need to specify for each $s_0 \cdots s_n \in S^n$

$$P(C(s_0 \cdots s_n)).$$

This amounts to specifying

1. $P(C(s_0))$ for each $s_0 \in S$, and
2. $P(C(s_0 \cdots s_i) \mid C(s_0 \cdots s_{i-1}))$ for each $s_0 \cdots s_i \in S^i$

since

$$P(C(s_0 \cdots s_n)) = P(C(s_0 \cdots s_n) \mid C(s_0 \cdots s_{n-1})) \cdot P(C(s_0 \cdots s_{n-1}))$$

$$= P(C(s_0)) \cdot \prod_{i=1}^{n} P(C(s_0 \cdots s_i) \mid C(s_0 \cdots s_{i-1}))$$

Still, lots of possibilities...
Weather Example: Option 1 - statistics of days of a year

- the forecast starts on Jan 01,
- a distribution p_j over \{sun, rain\} for each $1 \leq j \leq 365$,
- for each $i \in \mathbb{N}$ and $s_0 \cdots s_i \in S_i+1$

$$P(C(s_0 \cdots s_i) \mid C(s_0 \cdots s_{i-1})) = p_i \% 365(s_i)$$

Weather Example: Option 2 - two past days

- a distribution $p_{s's''}$ over \{sun, rain\} for each $s', s'' \in S$,
- for each $i \geq 2$ and $s_0 \cdots s_i \in S_i+1$

$$P(C(s_0 \cdots s_i) \mid C(s_0 \cdots s_{i-1})) = p_{s_{i-2}s_{i-1}}(s_i)$$
Weather Example: Option 1 - statistics of days of a year

- the forecast starts on Jan 01,
- a distribution p_j over $\{\text{sun}, \text{rain}\}$ for each $1 \leq j \leq 365$,
- for each $i \in \mathbb{N}$ and $s_0 \cdots s_i \in S^i+1$

$$P(C(s_0 \cdots s_i) \mid C(s_0 \cdots s_{i-1})) = p_i \% 365(s_i)$$

Weather Example: Option 2 - two past days

- a distribution $p_{s's''}$ over $\{\text{sun}, \text{rain}\}$ for each $s', s'' \in S$,
- for each $i \geq 2$ and $s_0 \cdots s_i \in S^{i+1}$

$$P(C(s_0 \cdots s_i) \mid C(s_0 \cdots s_{i-1})) = p_{s_{i-2}s_{i-1}}(s_i)$$

Here: time-homogeneous Markovian stochastic processes
Definition: Markov
A discrete-time stochastic process \(\{X_n \mid n \in \mathbb{N}\} \) is Markov if
\[
P(X_n = s_n \mid X_{n-1} = s_{n-1}, \ldots, X_0 = s_0) = P(X_n = s_n \mid X_{n-1} = s_{n-1})
\]
for all \(n > 1 \) and \(s_0, \ldots, s_n \in S \) with \(P(X_{n-1} = s_{n-1}) > 0 \).

Definition: Time-homogeneous
A discrete-time Markov process \(\{X_n \mid n \in \mathbb{N}\} \) is time-homogeneous if
\[
P(X_{n+1} = s' \mid X_n = s) = P(X_1 = s' \mid X_0 = s)
\]
for all \(n > 1 \) and \(s, s' \in S \) with \(P(X_0 = s) > 0 \).
Definition: Markov
A discrete-time stochastic process \(\{X_n \mid n \in \mathbb{N}\} \) is **Markov** if
\[
P(X_n = s_n \mid X_{n-1} = s_{n-1}, \ldots, X_0 = s_0) = P(X_n = s_n \mid X_{n-1} = s_{n-1})
\]
for all \(n > 1 \) and \(s_0, \ldots, s_n \in S \) with \(P(X_{n-1} = s_{n-1}) > 0 \).

Definition: Time-homogeneous
A discrete-time Markov process \(\{X_n \mid n \in \mathbb{N}\} \) is **time-homogeneous** if
\[
P(X_{n+1} = s' \mid X_n = s) = P(X_1 = s' \mid X_0 = s)
\]
for all \(n > 1 \) and \(s, s' \in S \) with \(P(X_0 = s) > 0 \).
Weather Example: Option 3 - one past day

- a distribution $p_{s'}$ over \{sun, rain\} for each $s' \in S$,
- for each $i \geq 1$ and $s_0 \ldots s_i \in S^{i+1}$

$$P(C(s_0 \ldots s_i) \mid C(s_0 \ldots s_{i-1})) = p_{s_{i-1}}(s_i)$$

- a distribution π over \{sun, rain\} such that $P(C(s_0)) = \pi(s_0)$.
Weather Example: Option 3 - one past day

- a distribution $p_{s'}$ over $\{\text{sun, rain}\}$ for each $s' \in S$,
- for each $i \geq 1$ and $s_0 \cdots s_i \in S^{i+1}$

\[
P(C(s_0 \cdots s_i) \mid C(s_0 \cdots s_{i-1})) = p_{s_{i-1}}(s_i)
\]

- a distribution π over $\{\text{sun, rain}\}$ such that $P(C(s_0)) = \pi(s_0)$.

Overly restrictive, isn’t it?
Weather Example: Option 3 - one past day

- a distribution $p_{s'}$ over $\{sun, rain\}$ for each $s' \in S$,
- for each $i \geq 1$ and $s_0 \ldots s_i \in S^{i+1}$
 \[P(C(s_0 \ldots s_i) | C(s_0 \ldots s_{i-1})) = p_{s_{i-1}}(s_i) \]
- a distribution π over $\{sun, rain\}$ such that $P(C(s_0)) = \pi(s_0)$.

Overly restrictive, isn’t it?

Not really – one only needs to extend the state space

- $S = \{1, \ldots, 365\} \times \{sun, rain\} \times \{sun, rain\}$,
- now each state encodes current day of the year, current weather, and weather yesterday,
- we can define over S a time–homogeneous Markov process based on both Options 1 & 2 given earlier.
Discrete-time Markov Chains
DTMC
Stochastic process → Graph based

Given a discrete-time homogeneous Markov process \(\{ X(n) \mid n \in \mathbb{N} \} \)

- with state space \(S \),
- defined on a probability space \((\Omega, \mathcal{F}, P)\)

we take over the state space \(S \) and define

- \(P(s, s') = P(X_n = s' \mid X_{n-1} = s) \) for an arbitrary \(n \in \mathbb{N} \) and
- \(\pi_0(s) = P(X_0 = s) \).

Graph based → stochastic process

Given a DTMC \((S, P, \pi_0)\), we set \(\Omega \) to \(S^\infty \), \(\mathcal{F} \) to the smallest \(\sigma \)-Algebra containing all cylinder sets and

\[
P(C(s_0 \ldots s_n)) = \pi_0(s_0) \cdot \prod_{1 \leq i \leq n} P(s_{i-1}, s_i)
\]

which uniquely defines the probability function \(P \) on \(\mathcal{F} \).
Let \((S, P, \pi_0)\) be a DTMC. We denote by

\[
P_s \text{ the probability function of DTMC } (S, P, \delta_s) \text{ where }
\]

\[
\delta_s(s') = \begin{cases} 1 & \text{if } s' = s \\ 0 & \text{otherwise} \end{cases}
\]

\[
E_s \text{ the expectation with respect to } P_s
\]
Analysis questions

- Transient analysis
- Steady-state analysis
- Rewards
- Reachability
- Probabilistic logics
DTMC - Transient Analysis
Example: Gambling with a Limit

What is the probability of being in state 0 after 3 steps?
Definition:
Given a DTMC \((S, P, \pi_0)\), we assume w.l.o.g. \(S = \{0, 1, \ldots \}\) and write \(p_{ij} = P(i, j)\). Further, we have

- \(P^{(1)} = P = (p_{ij})\) is the 1-step transition matrix
- \(P^{(n)} = (p_{ij}^{(n)})\) denotes the \(n\)-step transition matrix with
 \[
p_{ij}^{(n)} = P(X_n = j \mid X_0 = i) \quad (= P(X_{k+n} = j \mid X_k = i)).
 \]

How can we compute these probabilities?
Definition: Chapman-Kolmogorov Equation

Application of the law of total probability to the n-step transition probabilities $p_{ij}^{(n)}$ results in the Chapman-Kolmogorov Equation

$$p_{ij}^{(n)} = \sum_{h \in S} p_{ih}^{(m)} p_{hj}^{(n-m)} \quad \forall 0 < m < n.$$

Consequently, we have $P^{(n)} = PP^{(n-1)} = \ldots = P^n$.
Definition: Chapman-Kolmogorov Equation

Application of the law of total probability to the n-step transition probabilities $p_{ij}^{(n)}$ results in the Chapman-Kolmogorov Equation

$$p_{ij}^{(n)} = \sum_{h \in S} p_{ih}^{(m)} p_{hj}^{(n-m)} \quad \forall 0 < m < n.$$

Consequently, we have $P^{(n)} = PP^{(n-1)} = \ldots = P^n$.

Definition: Transient Probability Distribution

The transient probability distribution at time $n > 0$ is defined by

$$\pi_n = \pi_{n-1}P = \pi_0 P^n.$$
Example:

\[
P = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0.5 & 0 & 0.5 & 0 & 0 & 0 \\
0 & 0.5 & 0 & 0.5 & 0 & 0 \\
0 & 0 & 0.5 & 0 & 0.5 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

\[
P^2 = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0.5 & 0.25 & 0 & 0.25 & 0 & 0 \\
0.25 & 0 & 0.5 & 0 & 0.25 & 0 \\
0 & 0.25 & 0 & 0.25 & 0 & 0.5 \\
0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

- For \(\pi_0 = [0 \ 0 \ 1 \ 0 \ 0] \), \(\pi_2 = \pi_0 P^2 = [0.25 \ 0 \ 0.5 \ 0 \ 0.25] \).
- For, \(\pi_0 = [0.4 \ 0 \ 0 \ 0 \ 0.6] \), \(\pi_2 = \pi_0 P^2 = [0.4 \ 0 \ 0 \ 0 \ 0.6] \).

Actually, \(\pi_n = [0.4 \ 0 \ 0 \ 0 \ 0.6] \) for all \(n \in \mathbb{N} \)!
Example:

\[
P = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0.5 & 0 & 0.5 & 0 & 0 & 0 \\
0 & 0.5 & 0 & 0.5 & 0 & 0 \\
0 & 0 & 0.5 & 0 & 0.5 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

\[
P^2 = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0.5 & 0.25 & 0 & 0.25 & 0 & 0 \\
0.25 & 0 & 0.5 & 0 & 0.25 & 0 \\
0 & 0.25 & 0 & 0.25 & 0 & 0.5 \\
0 & 0 & 0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

- For \(\pi_0 = [0 \ 0 \ 1 \ 0 \ 0] \), \(\pi_2 = \pi_0 P^2 = [0.25 \ 0 \ 0.5 \ 0 \ 0.25] \).
- For \(\pi_0 = [0.4 \ 0 \ 0 \ 0 \ 0.6] \), \(\pi_2 = \pi_0 P^2 = [0.4 \ 0 \ 0 \ 0 \ 0.6] \).

Actually, \(\pi_n = [0.4 \ 0 \ 0 \ 0 \ 0.6] \) for all \(n \in \mathbb{N} \)!

Are there other “stable” distributions?
DTMC - Steady State Analysis
Definition: Stationary Distribution
A distribution π is *stationary* if

$$\pi = \pi P.$$

Stationary distribution is generally *not unique*.
Definition: Stationary Distribution
A distribution π is stationary if

$$\pi = \pi P.$$

Stationary distribution is generally not unique.

Definition: Limiting Distribution

$$\pi^* := \lim_{n \to \infty} \pi_n = \lim_{n \to \infty} \pi_0 P^n = \pi_0 \lim_{n \to \infty} P^n = \pi_0 \pi^*.$$

The limit can depend on π_0 and does not need to exist.
Definition: Stationary Distribution
A distribution π is stationary if

$$\pi = \pi P.$$

Stationary distribution is generally not unique.

Definition: Limiting Distribution

$$\pi^* := \lim_{n \to \infty} \pi_n = \lim_{n \to \infty} \pi_0 P^n = \pi_0 \lim_{n \to \infty} P^n = \pi_0 P^*.$$

The limit can depend on π_0 and does not need to exist.

Connection between stationary and limiting?
Example: Gambling with Social Guarantees

What are the stationary and limiting distributions?
Example: Gambling with Social Guarantees

What are the stationary and limiting distributions?

Definition: Periodicity
The period of a state i is defined as

$$d_i = \gcd\{n \mid p^n_{ii} > 0\}.$$

A state i is called aperiodic if $d_i = 1$ and periodic with period d_i otherwise. A Markov chain is aperiodic if all states are aperiodic.

Lemma
In a finite aperiodic Markov chain, the limiting distribution exists.
Example

Diagram:

- States: 0, 10, 20, 30, 40
- Transition probabilities:
 - From 0 to 10: 1/2
 - From 10 to 20: 1/2
 - From 20 to 30: 1/2
 - From 30 to 40: 1/2
 - From 40 to 0: 1

DTMC - Steady-State Analysis - Irreducibility (1)
Definition:
A DTMC is called irreducible if for all states $i, j \in S$ we have $p_{ij}^n > 0$ for some $n \geq 1$.

Lemma
In an aperiodic and irreducible Markov chain, the limiting distribution exists and does not depend on π_0.

![Diagram](image-url)
What is the stationary / limiting distribution?
What is the stationary / limiting distribution?
Lemma

In a finite aperiodic and irreducible Markov chain, the limiting distribution exists, does not depend on π_0, and equals the unique stationary distribution.
Definition:
Let \(f_{ij}^{(n)} = P(X_n = j \land \forall 1 \leq k < n : X_k \neq j \mid X_0 = i) \) for \(n \geq 1 \) be the \(n \)-step hitting probability. The hitting probability is defined as

\[
f_{ij} = \sum_{n=1}^{\infty} f_{ij}^{(n)}
\]

and a state \(i \) is called
- transient if \(f_{ii} < 1 \) and
- recurrent if \(f_{ii} = 1 \).
Definition:
Denoting expectation $m_{ij} = \sum_{n=1}^{\infty} n \cdot f_i^{(n)}$, a recurrent state i is called
- positive recurrent or recurrent non-null if $m_{ii} < \infty$ and
- recurrent null if $m_{ii} = \infty$.

Lemma
The states of an irreducible DTMC are all of the same type, i.e.,
- all periodic or
- all aperiodic and transient or
- all aperiodic and recurrent null or
- all aperiodic and recurrent non-null.
Definition: Ergodicity

A DTMC is **ergodic** if all its states are **irreducible**, **aperiodic** and **recurrent** non-null.

Theorem

In an ergodic Markov chain, the limiting distribution exists, does not depend on π_0, and equals the unique stationary distribution.

As a consequence, the steady-state distribution can be computed by solving the equation system

$$\pi = \pi P, \sum_{x \in S} \pi_x = 1.$$

Note: The Lemma for finite DTMC follows from the theorem as every irreducible finite DTMC is positive recurrent.
Example: Unbounded Gambling with House Edge

The DTMC is only ergodic for $p \in [0, 0.5)$.
DTMC – Rewards
Definition
A reward Markov chain is a tuple \((S, P, \pi_0, r)\) where \((S, P, \pi_0)\) is a Markov chain and \(r : S \rightarrow \mathbb{Z}\) is a reward function.
Definition

A reward Markov chain is a tuple \((S, P, \pi_0, r)\) where \((S, P, \pi_0)\) is a Markov chain and \(r : S \rightarrow \mathbb{Z}\) is a reward function.

Every run \(\rho = s_0, s_1, \ldots\) induces a sequence of values \(r(s_0), r(s_1), \ldots\)

Value of the whole run can be defined as
Definition
A reward Markov chain is a tuple \((S, P, \pi_0, r)\) where \((S, P, \pi_0)\) is a Markov chain and \(r : S \to \mathbb{Z}\) is a reward function.

Every run \(\rho = s_0, s_1, \ldots\) induces a sequence of values \(r(s_0), r(s_1), \ldots\).

Value of the whole run can be defined as

\[
\sum_{i=0}^{T} r(s_i)
\]

But what if \(T = \infty\)?

Discounted reward

\[
\sum_{i=0}^{\infty} \lambda^i r(s_i)
\]

for some \(0 < \lambda < 1\)

Average reward

\[
\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n} r(s_i)
\]

Also called long-run average or mean payoff

Definition
The expected average reward is

\[
\text{EAR} := \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n} E[r(X_i)]
\]
Definition
A reward Markov chain is a tuple \((S, P, \pi_0, r)\) where \((S, P, \pi_0)\) is a Markov chain and \(r : S \rightarrow \mathbb{Z}\) is a reward function.

Every run \(\rho = s_0, s_1, \ldots\) induces a sequence of values \(r(s_0), r(s_1), \ldots\)

Value of the whole run can be defined as

- total reward
 \[\sum_{i=0}^{T} r(s_i) \]
 But what if \(T = \infty\)?

- discounted reward
 \[\sum_{i=0}^{\infty} \lambda^i r(s_i) \text{ for some } 0 < \lambda < 1 \]

- average reward
 \[\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n} r(s_i) \]
 also called long-run average or mean payoff

Definition
The expected average reward is

\[\text{EAR} := \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n} E[r(X_i)] \]
Definition

A reward Markov chain is a tuple (S, P, π_0, r) where (S, P, π_0) is a Markov chain and $r : S \rightarrow \mathbb{Z}$ is a reward function.

Every run $\rho = s_0, s_1, \ldots$ induces a sequence of values $r(s_0), r(s_1), \ldots$

Value of the whole run can be defined as

- total reward
 \[\sum_{i=0}^{T} r(s_i) \]
- discounted reward
 \[\sum_{i=0}^{\infty} \lambda^i r(s_i) \] for some $0 < \lambda < 1$

But what if $T = \infty$?
Definition

A reward Markov chain is a tuple \((S, P, \pi_0, r)\) where \((S, P, \pi_0)\) is a Markov chain and \(r : S \to \mathbb{Z}\) is a reward function.

Every run \(\rho = s_0, s_1, \ldots\) induces a sequence of values \(r(s_0), r(s_1), \ldots\)

Value of the whole run can be defined as
- total reward
 \[\sum_{i=0}^{T} r(s_i)\]
- discounted reward
 \[\sum_{i=0}^{\infty} \lambda^i r(s_i)\] for some \(0 < \lambda < 1\)
- average reward
 \[\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n} r(s_i)\]
 also called long-run average or mean payoff
Definition
A reward Markov chain is a tuple \((S, P, \pi_0, r)\) where \((S, P, \pi_0)\) is a Markov chain and \(r : S \rightarrow \mathbb{Z}\) is a reward function.

Every run \(\rho = s_0, s_1, \ldots\) induces a sequence of values \(r(s_0), r(s_1), \ldots\)

Value of the whole run can be defined as
- total reward \(\sum_{i=0}^{T} r(s_i)\)
- discounted reward \(\sum_{i=0}^{\infty} \lambda^i r(s_i)\)
- average reward \(\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n} r(s_i)\)

also called long-run average or mean payoff

Definition
The expected average reward is

\[
\text{EAR} := \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n} \mathbb{E}[r(X_i)]
\]
Definition: Time-average Distribution

\[\hat{\pi} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n} \pi_i. \]

\(\hat{\pi}(s) \) expresses the ratio of time spent in \(s \) on the long run.

1More details later for Markov decision processes.
Definition: Time-average Distribution

\[\hat{\pi} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n} \pi_i. \]

\(\hat{\pi}(s) \) expresses the ratio of time spent in \(s \) on the long run.

Lemma

1. \(\mathbb{E}[r(X_i)] = \sum_{s \in S} \pi_i(s) \cdot r(s). \)
2. If \(\hat{\pi} \) exists then \(EAR = \sum_{s \in S} \hat{\pi}(s) \cdot r(s). \)
3. If limiting distribution exists, it coincides with \(\hat{\pi}. \)

\(^1\)More details later for Markov decision processes.
Definition: Time-average Distribution

\[\hat{\pi} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n} \pi_i. \]

\(\hat{\pi}(s) \) expresses the ratio of time spent in \(s \) on the long run.

Lemma

1. \(\mathbb{E}[r(X_i)] = \sum_{s \in S} \pi_i(s) \cdot r(s). \)
2. If \(\hat{\pi} \) exists then \(EAR = \sum_{s \in S} \hat{\pi}(s) \cdot r(s). \)
3. If limiting distribution exists, it coincides with \(\hat{\pi}. \)

Algorithm

1. Compute \(\hat{\pi} \) (or limiting distribution if possible).\(^1\)
2. Return \(\sum_{s \in S} \hat{\pi}(s) \cdot r(s). \)

\(^1\)More details later for Markov decision processes.
DTMC – Reachability
Definition: Reachability

Given a DTMC \((S, P, \pi_0)\), what is the probability of eventually reaching a set of goal states \(B \subseteq S\)?

Let \(x(s)\) denote \(P_s(\diamond B)\) where \(\diamond B = \{s_0s_1 \cdots | \exists i : s_i \in B\}\). Then

- \(s \in B\): \(x(s) = \)
- \(s \in S \setminus B\): \(x(s) = \)

\[
\begin{align*}
S & \quad x(s) \\
\quad s \in B & : x(s) = \\
\quad s \in S \setminus B & : x(s) =
\end{align*}
\]
Definition: Reachability

Given a DTMC \((S, P, \pi_0)\), what is the probability of eventually reaching a set of goal states \(B \subseteq S\)?

Let \(x(s)\) denote \(P_s(\Diamond B)\) where \(\Diamond B = \{s_0s_1 \cdots | \exists i : s_i \in B\}\). Then

- \(s \in B\): \(x(s) = 1\)
- \(s \in S \setminus B\): \(x(s) = \sum_{t \in S \setminus B} P(s, t)x(t) + \sum_{u \in B} P(s, u)\).
Lemma (Reachability Matrix Form)

Given a DTMC \((S, P, \pi_0)\), the column vector \(x = (x(s))_{s \in S \setminus B}\) of probabilities \(x(s) = P_s(\Diamond B)\) satisfies the constraint

\[
x = Ax + b,
\]

where matrix \(A\) is the submatrix of \(P\) for states \(S \setminus B\) and \(b = (b(s))_{s \in S \setminus B}\) is the column vector with \(b(s) = \sum_{u \in B} P(s, u)\).
The vector $x = [x_0 \ x_1 \ x_2]^T = [0.25 \ 0.5 \ 0]^T$ satisfies the equation system $x = Ax + b$.

▶ No! Consider, e.g., $[0.55 \ 0.7 \ 0.4]^T$ or $[1 \ 1 \ 1]^T$.

What is the equation system for these probabilities?
Example:

The vector $x = [x_0 \ x_1 \ x_2]^T = [0.25 \ 0.5 \ 0]^T$ satisfies the equation system $x = Ax + b$.

Is it the only solution?
Example:

The vector \(\mathbf{x} = [x_0 \ x_1 \ x_2]^T = [0.25 \ 0.5 \ 0]^T \) satisfies the equation system \(\mathbf{x} = \mathbf{A}\mathbf{x} + \mathbf{b} \).

Is it the only solution?

- No! Consider, e.g., \([0.55 \ 0.7 \ 0.4]\) or \([1 \ 1 \ 1]^T\).

What is the equation system for these probabilities?
Let $S_{=0} = \{ s \mid P_s(\Diamond B) = 0 \}$ and $S_? = S \setminus (S_{=0} \cup B)$. Let $\Diamond \leq^n B = \{ s_0s_1 \cdots \mid \exists i \leq n : s_i \in B \}$ be the set of runs reaching B from state s within n steps.
Let $S_{=0} = \{s \mid P_s(\diamond B) = 0\}$ and $S_? = S \setminus (S_{=0} \cup B)$.
Let $\diamond^{\leq n} B = \{s_0 s_1 \cdots \mid \exists i \leq n : s_i \in B\}$ be the set of runs reaching B from state s within n steps.

Theorem:
The column vector $x = (x(s))_{s \in S_?}$ of probabilities $x(s) = P_s(\diamond B)$ is the **unique solution** of the equation system

$$x = Ax + b,$$

where $A = (P(s, t))_{s, t \in S_?}$, $b = (b(s))_{s \in S_?}$ with $b(s) = \sum_{u \in B} P(s, u)$.

Furthermore, for $x_0 = (0)_{s \in S_?}$ and $x_i = Ax_{i-1} + b$ for any $i \geq 1$,

1. $x_n(s) = P_s(\diamond^{\leq n} B)$ for $s \in S_?$,
2. x_i is increasing, and
3. $x = \lim_{n \to \infty} x_n$.

Proof Sketch:

- \((x_s)_{x \in S}\) is a solution: by inserting into definition.
- Unique solution: By contradiction. Assume \(y\) is another solution, then \(x - y = A(x - y)\). One can show that \(A - I\) is invertible, thus \((A - I)(x - y) = 0\) yields \(x - y = (A - I)^{-1}0 = 0\) and finally \(x = y\).

Furthermore,

1. From the definitions, by straightforward induction.
2. From 1. since \(\Diamond^{\leq n} B \subseteq \Diamond^{\leq n+1} B\).
3. Since \(\Diamond B = \bigcup_{n \in \mathbb{N}} \Diamond^{\leq n} B\).

\[\]
Algorithmic aspects
Algorithmic Aspects - Summary of Equation Systems

Equation Systems

- Transient analysis: $\pi_n = \pi_0 P^n = \pi_{n-1} P$
- Steady-state analysis: $\pi P = \pi, \pi \cdot 1 = \sum_{s \in S} \pi(s) = 1 \quad \text{(ergodic)}$
- Reachability: $x = Ax + b$

Solution Techniques

1. Analytic solution, e.g. by Gaussian elimination
2. Iterative power method ($\pi_n \to \pi$ and $x_n \to x$ for $n \to \infty$)
3. Iterative methods for solving large systems of linear equations, e.g. Jacobi, Gauss-Seidel

Missing pieces

a. finding out whether a DTMC is ergodic,
b. computing $S? = S \setminus \{s \mid P_s(\boxdot B) = 0\}$,
c. efficient representation of P.
Algorithmic Aspects: a. Ergodicity of finite DTMC (1)

Ergodicity = Irreducibility + Aperiodicity + P. Recurrence

- A DTMC is called irreducible if for all states $i, j \in S$ we have $p_{ij}^n > 0$ for some $n \geq 1$.
- A state i is called aperiodic if $\gcd \{n \mid p_{ii}^n > 0\} = 1$.
- A state i is called positive recurrent if $f_{ii} = 1$ and $m_{ii} < \infty$.

How do we tell that a finite DTMC is ergodic?
Ergodicity = Irreducibility + Aperiodicity + P. Recurrence

- A DTMC is called **irreducible** if for all states $i, j \in S$ we have $p^n_{ij} > 0$ for some $n \geq 1$.
- A state i is called **aperiodic** if $\gcd\{n \mid p^n_{ii} > 0\} = 1$.
- A state i is called **positive recurrent** if $f_{ii} = 1$ and $m_{ii} < \infty$.

How do we tell that a finite DTMC is **ergodic**?

By analysis of the induced graph!

For a DTMC $(S, P, \pi(0))$ we define the **induced directed graph** (S, E) with $E = \{(s, s') \mid P(s, s') > 0\}$.

Recall:

- A directed graph is called **strongly connected** if there is a path from each vertex to every other vertex.
- **Strongly connected components (SCC)** are its maximal strongly connected subgraphs.
- A SCC T is **bottom (BSCC)** if no $s \not\in T$ is reachable from T.
Algorithmic Aspects: a. Ergodicity of finite DTMC (2)

Ergodicity = Irreducibility + Aperiodicity + P. Recurrence

- A DTMC is called **irreducible** if for all states \(i, j \in S \) we have \(p_{ij}^n > 0 \) for some \(n \geq 1 \).
- A state \(i \) is called **aperiodic** if \(\gcd\{n \mid p_{ii}^n > 0\} = 1 \).
- A state \(i \) is called **positive recurrent** if \(f_{ii} = 1 \) and \(m_{ii} < \infty \).

Theorem:
For finite DTMCs, it holds that:
Algorithmic Aspects: a. Ergodicity of finite DTMC (2)

Ergodicity = Irreducibility + Aperiodicity + P. Recurrence

- A DTMC is called **irreducible** if for all states $i, j \in S$ we have $p^n_{ij} > 0$ for some $n \geq 1$.
- A state i is called **aperiodic** if $\gcd\{n \mid p^n_{ii} > 0\} = 1$.
- A state i is called **positive recurrent** if $f_{ii} = 1$ and $m_{ii} < \infty$.

Theorem:
For finite DTMCs, it holds that:
- The DTMC is **irreducible** iff the induced graph is strongly connected.
Ergodicity = Irreducibility + Aperiodicity + P. Recurrence

- A DTMC is called \textit{irreducible} if for all states \(i, j \in S \) we have \(p^n_{ij} > 0 \) for some \(n \geq 1 \).
- A state \(i \) is called \textit{aperiodic} if \(\gcd\{ n \mid p^n_{ii} > 0 \} = 1 \).
- A state \(i \) is called \textit{positive recurrent} if \(f_{ii} = 1 \) and \(m_{ii} < \infty \).

Theorem:

For finite DTMCs, it holds that:

- The DTMC is \textit{irreducible} iff the induced graph is strongly connected.
- A state in a BSCC is \textit{aperiodic} iff the BSCC is aperiodic, i.e. the greatest common divisor of the lengths of all its cycles is 1.
Algorithmic Aspects: a. Ergodicity of finite DTMC (2)

Ergodicity = Irreducibility + Aperiodicity + P. Recurrence

- A DTMC is called **irreducible** if for all states $i, j \in S$ we have $p^n_{ij} > 0$ for some $n \geq 1$.
- A state i is called **aperiodic** if $\gcd\{n \mid p^n_{ii} > 0\} = 1$.
- A state i is called **positive recurrent** if $f_{ii} = 1$ and $m_{ii} < \infty$.

Theorem:
For **finite** DTMCs, it holds that:

- The DTMC is **irreducible** iff the induced graph is strongly connected.
- A state in a BSCC is **aperiodic** iff the BSCC is aperiodic, i.e. the greatest common divisor of the lengths of all its cycles is 1.
- A state is **positive recurrent** iff it belongs to a BSCC otherwise it is **transient**.
Algorithmic Aspects: a. Ergodicity of finite DTMC (3)

How to check: is gcd of the lengths of all cycles of a strongly connected graph 1?
Algorithmic Aspects: a. Ergodicity of finite DTMC (3)

How to check: is \(\gcd \) of the lengths of all cycles of a strongly connected graph 1?

\[\gcd \{ n \geq 1 \mid \exists s : P^n(s, s) > 0 \} = 1 \]
How to check: is gcd of the lengths of all cycles of a strongly connected graph 1?

- \(\gcd \{ n \geq 1 \mid \exists s : P^n(s, s) > 0 \} = 1 \)
- in time \(\mathcal{O}(n + m) \)?
How to check: is \gcd of the lengths of all cycles of a strongly connected graph 1?

- $\gcd\{n \geq 1 \mid \exists s : P^n(s, s) > 0\} = 1$
- in time $O(n + m)$? By the following DFS-based procedure:

Algorithm: PERIOD(vertex v, unsigned level : init 0)

1. global $period$: init 0;
2. if $period = 1$ then
 3. return
3. end
4. if v is unmarked then
 5. mark v;
 6. $v_{level} = level$;
 7. for $v' \in out(v)$ do
 8. PERIOD(v', $level + 1$)
 9. end
10. else
11. $period = \gcd(period, level - v_{level})$;
12. end
Algorithmic Aspects: b. Computing the set $S_?$

We have $S_? = S \setminus (B \cup S_{=0})$ where $S_{=0} = \{s \mid P_s(\Diamond B) = 0\}$. Hence,

$$s \in S_{=0} \iff p_{ss'}^n = 0 \text{ for all } n \geq 1 \text{ and } s' \in B.$$
We have $S_? = S \setminus (B \cup S_{=0})$ where $S_{=0} = \{s \mid P_s(\Diamond B) = 0\}$.
Hence,

$$s \in S_{=0} \iff p_{ss'}^n = 0 \text{ for all } n \geq 1 \text{ and } s' \in B.$$

This can be again easily checked from the induced graph:

Lemma

*We have $s \in S_{=0}$ iff there is no path from s to any state from B.***

Proof.

Easy from the fact that $p_{ss'}^n > 0$ iff there is a path of length n to s'.
There are many entries in the transition matrix. Sparse matrices offer a more concise storage.

There are many similar entries in the transition matrix. Multi-terminal binary decision diagrams offer a more concise storage, using automata theory.

Zhang (Saarland University, Germany) Quantitative Model Checking August 24th, 2009
1. There are many 0 entries in the transition matrix. Sparse matrices offer a more concise storage.
1. There are many 0 entries in the transition matrix. Sparse matrices offer a more concise storage.

2. There are many similar entries in the transition matrix. Multi-terminal binary decision diagrams offer a more concise storage, using automata theory.
DTMC - Probabilistic Temporal Logics for Specifying Complex Properties
Definition:
A labeled DTMC is a tuple $\mathcal{D} = (S, P, \pi_0, L)$ with $L : S \rightarrow 2^{AP}$, where

- AP is a set of atomic propositions and
- L is a labeling function, where $L(s)$ specifies which properties hold in state $s \in S$.
States and transitions

state = configuration of the game;
transition = rolling the dice and acting (randomly) based on the result.

State labels

- *init*, *rwin*, *bwin*, *rkicked*, *bkicked*, …
- *r30*, *r21*, …,
- *b30*, *b21*, …,

Examples of Properties

- the game cannot return back to start
- at any time, the game eventually ends with prob. 1
- at any time, the game ends within 100 dice rolls with prob. \(\geq 0.5 \)
- the probability of winning without ever being kicked out is \(\leq 0.3 \)

How to specify them formally?
Linear-time view

▶ corresponds to our (human) perception of time
▶ can specify properties of one concrete linear execution of the system

Example: eventually red player is kicked out followed immediately by blue player being kicked out.

Branching-time view

▶ views future as a set of all possibilities
▶ can specify properties of all executions from a given state – specifies execution trees

Example: in every computation it is always possible to return to the initial state.
Linear Temporal Logic (LTL)

Syntax for formulae specifying executions:

\[\psi = true \mid a \mid \psi \land \psi \mid \neg \psi \mid X \psi \mid \psi U \psi \mid F \psi \mid G \psi \]

Example: eventually red player is kicked out followed immediately by blue player being kicked out: \(F (rkicked \land X bkicked) \)

Question: do all executions satisfy the given LTL formula?

Computation Tree Logic (CTL)

Syntax for specifying states:

\[\phi = true \mid a \mid \phi \land \phi \mid \neg \phi \mid A \psi \mid E \psi \]

Syntax for specifying executions:

\[\psi = X \phi \mid \phi U \phi \mid F \phi \mid G \phi \]

Example: in all computations it is always possible to return to initial state: \(A G E F init \)

Question: does the given state satisfy the given CTL state formula?
Syntax

\[\psi = \text{true} \mid a \mid \psi \land \psi \mid \neg \psi \mid X \psi \mid \psi U \psi. \]

Semantics (for a path \(\omega = s_0 s_1 \cdots \))

- \(\omega \models \text{true} \) (always),
- \(\omega \models a \) iff \(a \in L(s_0) \),
- \(\omega \models \psi_1 \land \psi_2 \) iff \(\omega \models \psi_1 \) and \(\omega \models \psi_2 \),
- \(\omega \models \neg \psi \) iff \(\omega \not\models \psi \),
- \(\omega \models X \psi \) iff \(s_1 s_2 \cdots \models \psi \),
- \(\omega \models \psi_1 U \psi_2 \) iff \(\exists i \geq 0 : s_is_{i+1} \cdots \models \psi_2 \) and \(\forall j < i : s_js_{j+1} \cdots \models \psi_1 \).

Syntactic sugar

- \(F \psi \equiv \)
- \(G \psi \equiv \)
Logics - LTL

Syntax
\[\psi = \text{true} | a | \psi \land \psi | \neg \psi | X \psi | \psi U \psi. \]

Semantics (for a path \(\omega = s_0 s_1 \cdots \))

- \(\omega \models \text{true} \) (always),
- \(\omega \models a \) iff \(a \in L(s_0) \),
- \(\omega \models \psi_1 \land \psi_2 \) iff \(\omega \models \psi_1 \) and \(\omega \models \psi_2 \),
- \(\omega \models \neg \psi \) iff \(\omega \not\models \psi \),
- \(\omega \models X \psi \) iff \(s_1 s_2 \cdots \models \psi \),
- \(\omega \models \psi_1 U \psi_2 \) iff \(\exists i \geq 0 : s_i s_{i+1} \cdots \models \psi_2 \) and \(\forall j < i : s_j s_{j+1} \cdots \models \psi_1 \).

Syntactic sugar

- \(F \psi \equiv \text{true} U \psi \)
- \(G \psi \equiv \neg (\text{true} U \neg \psi) \) (\(\equiv \neg F \neg \psi \))
Logics - CTL

Syntax
State formulae:

$$\phi = true \mid a \mid \phi \land \phi \mid \neg \phi \mid A \psi \mid E \psi$$

where $$\psi$$ is a path formula.

Semantics

For a state $$s$$:

- $$s \models true$$ (always),
- $$s \models a$$ iff $$a \in L(s)$$,
- $$s \models \phi_1 \land \phi_2$$ iff $$s \models \phi_1$$ and $$s \models \phi_2$$,
- $$s \models \neg \phi$$ iff $$s \not\models \phi$$,
- $$s \models A \psi$$ iff $$\omega \models \psi$$ for all paths $$\omega = s_0s_1 \cdots$$ with $$s_0 = s$$,
- $$s \models E \psi$$ iff $$\omega \models \psi$$ for some path $$\omega = s_0s_1 \cdots$$ with $$s_0 = s$$.

Path formulae:

$$\psi = X \phi \mid \phi U \phi$$

where $$\phi$$ is a state formula.

For a path $$\omega = s_0s_1 \cdots$$:

- $$\omega \models X \phi$$ iff $$s_1s_2 \cdots$$ satisfies $$\phi$$,
- $$\omega \models \phi_1 U \phi_2$$ iff $$\exists i : s_is_{i+1} \cdots \models \phi_2$$ and $$\forall j < i : s_js_{j+1} \cdots \models \phi_1$$.
Linear Temporal Logic (LTL)
Syntax for formulae specifying executions:

\[\psi = \text{true} \mid a \mid \psi \land \psi \mid \neg \psi \mid X \psi \mid \psi U \psi \mid F \psi \mid G \psi \]

Example: eventually red player is kicked out followed immediately by blue player being kicked out: \(F (rkicked \land X bkicked) \)
Question: do all executions satisfy the given LTL formula?

Computation Tree Logic (CTL)
Syntax for specifying states:
\[\phi = \text{true} \mid a \mid \phi \land \phi \mid \neg \phi \mid A \psi \mid E \psi \]
Syntax for specifying executions:
\[\psi = X \phi \mid \phi U \phi \mid F \phi \mid G \phi \]

Example: in all computations it is always possible to return to initial state: \(A G E F \text{ init} \)
Question: does the given state satisfy the given CTL state formula?
Linear Temporal Logic (LTL) + probabilities
Syntax for formulae specifying executions:

\[\psi = true | a | \psi \land \psi | \neg \psi | X \psi | \psi U \psi | F \psi | G \psi \]

Example: with prob. \(\geq 0.8 \), eventually red player is kicked out followed immediately by blue player being kicked out:

\[P(F (rkicked \land X bkicked)) \geq 0.8 \]

Question: is the formula satisfied by executions of given probability?
Logics - Temporal Logics - probabilistic

Linear Temporal Logic (LTL) + probabilities
Syntax for formulae specifying executions:

\[\psi = \text{true} | a | \psi \land \psi | \neg \psi | X \psi | \psi U \psi | F \psi | G \psi \]

Example: with prob. \(\geq 0.8 \), eventually red player is kicked out followed immediately by blue player being kicked out:

\[P(F (rkicked \land X bkicked)) \geq 0.8 \]

Question: is the formula satisfied by executions of given probability?

Probabilistic Computation Tree Logic (PCTL)
Syntax for specifying states:

\[\phi = \text{true} | a | \phi \land \phi | \neg \phi | P_J \psi \]

Syntax for specifying executions:

\[\psi = X \phi | \phi U \phi | \phi U \leq_k \phi | F \phi | G \phi \]

Example: with prob. at least 0.5 the probability to return to initial state is always at least 0.1: \[P_{\geq 0.5} G \quad P_{\geq 0.1} F \text{ init} \]

Question: does the given state satisfy the given PCTL state formula?
Logics - PCTL - Examples

Syntactic sugar:
- $\phi_1 \lor \phi_2 \equiv \neg(\neg\phi_1 \land \neg\phi_2)$, $\phi_1 \Rightarrow \phi_2 \equiv \neg\phi_1 \lor \phi_2$, etc.
- ≤ 0.5 denotes the interval $[0, 0.5]$, $= 1$ denotes $[1, 1]$, etc.

Examples:
- A fair die:
 $$\bigwedge_{i \in \{1, \ldots, 6\}} P_{=\frac{1}{6}}(F_i).$$

- The probability of winning "Who wants to be a millionaire" without using any joker should be negligible:
 $$P_{<1e^{-10}}(\neg(J_{50\%} \lor J_{audience} \lor J_{telephone}) \lor \text{win}).$$
Semantics

For a state s:

- $s \models true$ (always),
- $s \models a$ iff $a \in L(s)$,
- $s \models \phi_1 \land \phi_2$ iff $s \models \phi_1$ and $s \models \phi_2$,
- $s \models \neg \phi$ iff $s \not\models \phi$,
- $s \models P_J(\psi)$ iff $P_s(\text{Paths}(\psi)) \in J$

For a path $\omega = s_0 s_1 \cdots$:

- $\omega \models X \phi$ iff $s_1 s_2 \cdots$ satisfies ϕ,
- $\omega \models \phi_1 U \phi_2$ iff $\exists i : s_i s_{i+1} \cdots \models \phi_2$ and $\forall j < i : s_j s_{j+1} \cdots \models \phi_1$.
- $\omega \models \phi_1 U \leq^n \phi_2$ iff $\exists i \leq n : s_i s_{i+1} \cdots \models \phi_2$ and $\forall j < i : s_j s_{j+1} \cdots \models \phi_1$.
Examples of Properties

1. the game cannot return back to start
2. at any time, the game eventually ends with prob. 1
3. at any time, the game ends within 100 dice rolls with prob. ≥ 0.5
4. the probability of winning without ever being kicked out is ≤ 0.3
Examples of Properties

1. the game cannot return back to start
2. at any time, the game eventually ends with prob. 1
3. at any time, the game ends within 100 dice rolls with prob. ≥ 0.5
4. the probability of winning without ever being kicked out is ≤ 0.3

Formally

1. $P(\forall G \neg \text{init}) = 1$ (LTL + prob.)
 $P_{=1}(\forall P_{=0}(G \neg \text{init}))$ (PCTL)
2. $P_{=1}(G P_{=1}(F (\text{rwin} \lor \text{bwin})))$ (PCTL)
3. $P_{=1}(G P_{\geq 0.5}(F \leq_{100}(\text{rwin} \lor \text{bwin})))$ (PCTL)
4. $P((\neg \text{rkicked} \land \neg \text{bkicked}) U (\text{rwin} \lor \text{bwin}) \leq 0.3$ (LTL + prob.)
PCTL Model Checking Algorithm
Definition: PCTL Model Checking
Let $D = (S, P, \pi_0, L)$ be a DTMC, Φ a PCTL state formula and $s \in S$. The model checking problem is to decide whether $s \models \Phi$.

Theorem
The PCTL model checking problem can be decided in time polynomial in $|D|$, linear in $|\Phi|$, and linear in the maximum step bound n.
Algorithm:

Consider the **bottom-up traversal** of the parse tree of Φ:

- The leaves are $a \in AP$ or true and
- the inner nodes are:
 - unary – labelled with the operator \neg or $P_J(X)$;
 - binary – labelled with an operator \land, $P_J(U)$, or $P_J(U \leq n)$.

Example:

\[
\neg a \land P_{\leq 0.2}(\neg b \lor P_{\geq 0.9}(\diamond c))
\]

Compute $Sat(\Psi) = \{s \in S \mid s \models \Psi\}$ for each node Ψ of the tree in a bottom-up fashion. Then $s \models \Phi$ iff $s \in Sat(\Phi)$.
“Base” of the algorithm:
We need a procedure to compute $Sat(\Psi)$ for Ψ of the form a or $true$:
“Base” of the algorithm:
We need a procedure to compute $\text{Sat}(\Psi)$ for Ψ of the form a or true:

Lemma
- $\text{Sat}(\text{true}) = S$,
- $\text{Sat}(a) = \{s \mid a \in L(s)\}$
“Base” of the algorithm:
We need a procedure to compute $Sat(\Psi)$ for Ψ of the form a or $true$:

Lemma

- $Sat(true) = S$,
- $Sat(a) = \{s \mid a \in L(s)\}$

“Induction” step of the algorithm:
We need a procedure to compute $Sat(\Psi)$ for Ψ given the sets $Sat(\Psi')$ for all state sub-formulas Ψ' of Ψ:

Lemma

- $Sat(\Phi_1 \land \Phi_2) =$
- $Sat(\neg\Phi) =$
“Base” of the algorithm:
We need a procedure to compute $Sat(\Psi)$ for Ψ of the form a or $true$:

Lemma
- $Sat(true) = S$,
- $Sat(a) = \{s \mid a \in L(s)\}$

“Induction” step of the algorithm:
We need a procedure to compute $Sat(\Psi)$ for Ψ given the sets $Sat(\Psi')$ for all state sub-formulas Ψ' of Ψ:

Lemma
- $Sat(\Phi_1 \land \Phi_2) = Sat(\Phi_1) \cap Sat(\Phi_2)$
- $Sat(\neg \Phi) = S \setminus Sat(\Phi)$

$Sat(\mathcal{P}_J(\Phi)) = \{s \mid P_s(Paths(\Phi)) \in J\}$ discussed on the next slide.
Lemma

- **Next:**
 \[P_s(Paths(X \Phi)) = \]

- **Bounded Until:**
 \[P_s(Paths(\Phi_1 U \leq^n \Phi_2)) = \]

- **Unbounded Until:**
 \[P_s(Paths(\Phi_1 U \Phi_2)) = \]
Lemma

- **Next:**

 \[P_s(\text{Paths}(x \ \Phi)) = \sum_{s' \in \text{Sat}(\Phi)} P(s, s') \]

- **Bounded Until:**

 \[P_s(\text{Paths}(\Phi_1 \ \mathcal{U} \ \leq^n \ \Phi_2)) = P_s(\text{Sat}(\Phi_1) \ \mathcal{U} \ \leq^n \ \text{Sat}(\Phi_2)) \]

- **Unbounded Until:**

 \[P_s(\text{Paths}(\Phi_1 \ \mathcal{U} \ \Phi_2)) = P_s(\text{Sat}(\Phi_1) \ \mathcal{U} \ \text{Sat}(\Phi_2)) \]

As before: can be reduced to transient analysis and to unbounded reachability.
Lemma

- **Next:**
 \[P_s(Paths(\mathcal{X} \Phi)) = \sum_{s' \in \text{Sat} (\Phi)} P(s, s') \]

- **Bounded Until:**
 \[P_s(Paths(\Phi_1 \mathcal{U} \leq^n \Phi_2)) = P_s(\text{Sat}(\Phi_1) \mathcal{U} \leq^n \text{Sat}(\Phi_2)) \]

- **Unbounded Until:**
 \[P_s(Paths(\Phi_1 \mathcal{U} \Phi_2)) = P_s(\text{Sat}(\Phi_1) \mathcal{U} \text{Sat}(\Phi_2)) \]

As before:
can be reduced to transient analysis and to unbounded reachability.
Precise algorithm
Computation for every node in the parse tree and for every state:

- All node types except for path operator – trivial.
- **Next**: Trivial.
- **Until**: Solving equation systems can be done by polynomially many elementary arithmetic operations.
- **Bounded until**: Matrix vector multiplications can be done by polynomial many elementary arithmetic operations as well.

Overall complexity:
Polynomial in $|\mathcal{D}|$, linear in $|\Phi|$ and the maximum step bound n.

In practice
The **until** and **bounded until** probabilities computed approximatively:

- rounding off probabilities in matrix-vector multiplication,
- using approximative iterative methods *(error guarantees?!!).*
pLTL Model Checking Algorithm
Definition: LTL Model Checking
Let \(D = (S, P, \pi_0, L) \) be a DTMC, \(\Psi \) a LTL formula, \(s \in S \), and \(p \in [0, 1] \). The model checking problem is to decide whether \(s \models P^D_s(Paths(\Psi)) \geq p \).

Theorem
The LTL model checking can be decided in time \(O(|D| \cdot 2^{|\Psi|}) \).
Definition: LTL Model Checking
Let $\mathcal{D} = (S, P, \pi_0, L)$ be a DTMC, Ψ a LTL formula, $s \in S$, and $p \in [0, 1]$. The model checking problem is to decide whether $s \models P^D_s(\text{Paths}(\Psi)) \geq p$.

Theorem
The LTL model checking can be decided in time $O(|D| \cdot 2^{|\Psi|})$.

Algorithm Outline
1. Construct from Ψ a deterministic Rabin automaton A recognizing words satisfying Ψ, i.e. $\text{Paths}(\Psi) := \{ L(\omega) \in (2^Ap)^\infty \mid \omega \models \Psi \}$
LTL Model Checking - Overview

Definition: LTL Model Checking
Let $D = (S, P, \pi_0, L)$ be a DTMC, Ψ a LTL formula, $s \in S$, and $p \in [0, 1]$. The model checking problem is to decide whether $s \models P_s^D(\text{Paths}(\Psi)) \geq p$.

Theorem
The LTL model checking can be decided in time $O(|D| \cdot 2^{|\Psi|})$.

Algorithm Outline
1. Construct from Ψ a deterministic Rabin automaton A recognizing words satisfying Ψ, i.e. $\text{Paths}(\Psi) := \{L(\omega) \in (2^A)^{\infty} | \omega \models \Psi\}$
2. Construct a product DTMC $D \times A$ that “embeds” the deterministic execution of A into the Markov chain.
LTL Model Checking - Overview

Definition: LTL Model Checking
Let $\mathcal{D} = (S, P, \pi_0, L)$ be a DTMC, Ψ a LTL formula, $s \in S$, and $p \in [0, 1]$. The model checking problem is to decide whether $s \models P^\mathcal{D}_s(\text{Paths}(\Psi)) \geq p$.

Theorem
The LTL model checking can be decided in time $O(|\mathcal{D}| \cdot 2^{|\Psi|})$.

Algorithm Outline
1. Construct from Ψ a deterministic Rabin automaton A recognizing words satisfying Ψ, i.e. $\text{Paths}(\Psi) := \{L(\omega) \in (2^Ap)^\infty | \omega \models \Psi\}$
2. Construct a product DTMC $\mathcal{D} \times A$ that “embeds” the deterministic execution of A into the Markov chain.
3. Compute in $\mathcal{D} \times A$ the probability of paths where A satisfies the acceptance condition.
Deterministic Rabin automaton (DRA): \((Q, \Sigma, \delta, q_0, Acc)\)

- a DFA with a different acceptance condition,
- \(Acc = \{(E_i, F_i) | 1 \leq i \leq k\}\)
- each accepting infinite path must visit for some \(i\)
 - all states of \(E_i\) at most finitely often and
 - some state of \(F_i\) infinitely often.

Example
Give some automata recognizing the language of formulas

\((a \land X b) \lor a U c\)

\((\neg \Pi a) F\)

\(\neg F (G a)\)

Lemma (Vardi&Wolper'86, Safra'88)
For any LTL formula \(\Psi\) there is a DRA \(A\) recognizing \(\text{Paths}(\Psi)\) with

\(|A| \in 2^O(|\Psi|)\).
Deterministic Rabin automaton (DRA): $(Q, \Sigma, \delta, q_0, Acc)$
- a DFA with a different acceptance condition,
- $Acc = \{(E_i, F_i) \mid 1 \leq i \leq k\}$
- each accepting infinite path must visit for some i
 - all states of E_i at most finitely often and
 - some state of F_i infinitely often.

Example
Give some automata recognizing the language of formulas
- $(a \land X b) \lor aUc$
- FGa
- GFa
Deterministic Rabin automaton (DRA): $(Q, \Sigma, \delta, q_0, \text{Acc})$

- a DFA with a different acceptance condition,
- $\text{Acc} = \{(E_i, F_i) \mid 1 \leq i \leq k\}$
- each accepting infinite path must visit for some i
 - all states of E_i at most finitely often and
 - some state of F_i infinitely often.

Example

Give some automata recognizing the language of formulas

- $(a \land X b) \lor aUc$

- FGa

- GFa

Lemma (Vardi&Wolper’86, Safra’88)

For any LTL formula Ψ there is a DRA A recognizing $\text{Paths}(\Psi)$ with $|A| \in 2^{O(|\Psi|)}$.

For a labelled DTMC $\mathcal{D} = (S, P, \pi_0, L)$ and a DRA $\mathcal{A} = (Q, 2^{Ap}, \delta, q_0, \{(E_i, F_i) \mid 1 \leq i \leq k\})$ we define

1. a DTMC $\mathcal{D} \times \mathcal{A} = (S \times Q, P', \pi'_0)$:
 - $P'((s, q), (s', q')) = P(s, s')$ if $\delta(q, L(s')) = q'$ and 0, otherwise;
 - $\pi'_0((s, q_s)) = \pi_0(s)$ if $\delta(q_0, L(s)) = q_s$ and 0, otherwise; and

Lemma

The construction preserves probability of accepting as

$$P_{\mathcal{D}}(\text{Lang}(\mathcal{A})) = P_{\mathcal{D} \times \mathcal{A}}((s, q_s), \{\omega \mid \exists i: \inf(\omega) \cap E'_{\mathcal{A}_i} = \emptyset, \inf(\omega) \cap F'_{\mathcal{A}_i} \neq \emptyset\})$$

where $\inf(\omega)$ is the set of states visited in ω infinitely often.

Proof sketch.

We have a one-to-one correspondence between executions of \mathcal{D} and $\mathcal{D} \times \mathcal{A}$ (as \mathcal{A} is deterministic), mapping $\text{Lang}(\mathcal{A})$ to $\{\cdots\}$, and preserving probabilities.
For a labelled DTMC $D = (S, P, \pi_0, L)$ and a DRA $A = (Q, 2^{Ap}, \delta, q_0, \{(E_i, F_i) | 1 \leq i \leq k\})$ we define

1. a DTMC $D \times A = (S \times Q, P', \pi'_0)$:
 - $P'((s, q), (s', q')) = P(s, s')$ if $\delta(q, L(s')) = q'$ and 0, otherwise;
 - $\pi'_0((s, q_s)) = \pi_0(s)$ if $\delta(q_0, L(s)) = q_s$ and 0, otherwise; and

2. $\{(E'_i, F'_i) | 1 \leq i \leq k\}$ where for each i:
 - $E'_i = \{(s, q) | q \in E_i, s \in S\}$,
 - $F'_i = \{(s, q) | q \in F_i, s \in S\}$.

Lemma

The construction preserves probability of accepting as $P(D) = P(D \times A)$.
For a labelled DTMC $\mathcal{D} = (S, P, \pi_0, L)$ and a DRA $A = (Q, 2^A P, \delta, q_0, \{(E_i, F_i) | 1 \leq i \leq k\})$ we define

1. a DTMC $\mathcal{D} \times A = (S \times Q, P', \pi'_0)$:
 - $P'((s, q), (s', q')) = P(s, s')$ if $\delta(q, L(s')) = q'$ and 0, otherwise;
 - $\pi'_0((s, q_s)) = \pi_0(s)$ if $\delta(q_0, L(s)) = q_s$ and 0, otherwise; and

2. $\{(E'_i, F'_i) | 1 \leq i \leq k\}$ where for each i:
 - $E'_i = \{(s, q) | q \in E_i, s \in S\}$,
 - $F'_i = \{(s, q) | q \in F_i, s \in S\}$,

Lemma

The construction preserves probability of accepting as

$$P_s^\mathcal{D}(\text{Lang}(A)) = P_{(s, q_s)}^{\mathcal{D} \times A}(\{\omega | \exists i : \inf(\omega) \cap E'_i = \emptyset, \inf(\omega) \cap F'_i \neq \emptyset\})$$

where $\inf(\omega)$ is the set of states visited in ω infinitely often.

Proof sketch.

We have a one-to-one correspondence between executions of \mathcal{D} and $\mathcal{D} \times A$ (as A is deterministic), mapping $\text{Lang}(A)$ to $\{\cdots\}$, and preserving probabilities.
How to check the probability of accepting in $D \times A$?

Identify the BSCCs $(C_j)_j$ of $D \times A$ that for some $1 \leq i \leq k$,
1. contain no state from E'_i and
2. contain some state from F'_i.

Lemma $\mathbb{P}_{D \times A}(s, q_s)(\{\omega \mid \exists i: \inf(\omega) \cap E'_i = \emptyset, \inf(\omega) \cap F'_i \neq \emptyset\}) = \mathbb{P}_{D \times A}(s, q_s)(\text{♦} \bigcup j C_j)$.

Proof sketch.
▶ Note that some BSCC of each finite DTMC is reached with probability 1 (short paths with prob. bounded from below).
▶ Rabin acceptance condition does not depend on any finite prefix of the infinite word.
▶ every state of a finite irreducible DTMC is visited infinitely often with probability 1 regardless of the choice of initial state.

Corollary $\mathbb{P}_D(s)(\text{Lang}(A)) = \mathbb{P}_{D \times A}(s, q_s)(\text{♦} \bigcup j C_j)$.
How to check the probability of accepting in \(D \times A \)?

Identify the BSCCs \((C_j)_j\) of \(D \times A \) that for some \(1 \leq i \leq k \),

1. contain no state from \(E'_i \) and
2. contain some state from \(F'_i \).

Lemma

\[
P^{D \times A}_{(s,qs)}(\{\omega \mid \exists i : \inf(\omega) \cap E'_i = \emptyset, \inf(\omega) \cap F'_i \neq \emptyset\}) = P^{D \times A}_{(s,qs)}(\diamond \bigcup_j C_j).
\]
How to check the probability of accepting in $D \times A$?
Identify the BSCCs $(C_j)_j$ of $D \times A$ that for some $1 \leq i \leq k$,
1. contain no state from E'_i and
2. contain some state from F'_i.

Lemma

$$P_{(s,q_s)}^{D \times A}(\{\omega \mid \exists i : \inf(\omega) \cap E'_i = \emptyset, \inf(\omega) \cap F'_i \neq \emptyset\}) = P_{(s,q_s)}^{D \times A}(\diamond \bigcup_j C_j).$$

Proof sketch.

- Note that some BSCC of each finite DTMC is reached with probability 1 (short paths with prob. bounded from below),
- Rabin acceptance condition does not depend on any finite prefix of the infinite word,
- every state of a finite irreducible DTMC is visited infinitely often with probability 1 regardless of the choice of initial state.
How to check the probability of accepting in $D \times A$?

Identify the BSCCs $(C_j)_j$ of $D \times A$ that for some $1 \leq i \leq k$,

1. contain no state from E'_i and
2. contain some state from F'_i.

Lemma

$$P^{D \times A}_{(s, q_s)}(\omega \mid \exists i : \inf(\omega) \cap E'_i = \emptyset, \inf(\omega) \cap F'_i \neq \emptyset) = P^{D \times A}_{(s, q_s)}(\Box \bigcup_j C_j).$$

Proof sketch.

- Note that some BSCC of each finite DTMC is reached with probability 1 (*short paths with prob. bounded from below*),
- Rabin acceptance condition does not depend on any finite prefix of the infinite word,
- every state of a finite irreducible DTMC is visited infinitely often with probability 1 regardless of the choice of initial state.

Corollary

$$P^D_s(Lang(A)) = P^{D \times A}_{(s, q_s)}(\Box \bigcup_j C_j).$$
Doubly exponential in Ψ and polynomial in D
(for the algorithm presented here):

1. $|A|$ and hence also $|D \times A|$ is of size $2^{2^O(|\Psi|)}$

2. BSCC computation: Tarjan algorithm - linear in $|D \times A|$
 (number of states + transitions)

3. Unbounded reachability: system of linear equations ($\leq |D \times A|$):
 - exact solution: \approx cubic in the size of the system
 - approximative solution: efficient in practice