Model Checking – Exercise sheet 10

Exercise 10.1
Consider the following Kripke structures \mathcal{K}_1, \mathcal{K}_2, and \mathcal{K}_3, over $AP = \{p\}$:

(a) Does \mathcal{K}_2 simulate \mathcal{K}_1? If yes, give a simulation relation. Otherwise, explain why.
(b) Does \mathcal{K}_2 simulate \mathcal{K}_3? If yes, give a simulation relation. Otherwise, explain why.
(c) Does \mathcal{K}_3 simulate \mathcal{K}_2? If yes, give a simulation relation. Otherwise, explain why.
(d) Does \mathcal{K}_3 simulate \mathcal{K}_1? If yes, give a simulation relation. Otherwise, explain why.

Exercise 10.2
Let \mathcal{K}_1, \mathcal{K}_2, and \mathcal{K}_3 be Kripke structures. Show that if \mathcal{K}_1 and \mathcal{K}_2 are bisimilar, and \mathcal{K}_2 and \mathcal{K}_3 are bisimilar, then \mathcal{K}_1 and \mathcal{K}_3 are also bisimilar.
Exercise 10.3
(Taken from 'Principles of Model Checking')
Let $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system. A bisimulation for TS is a binary relation R on S such that for all $(s_1, s_2) \in R$:

- $L(s_1) = L(s_2)$.
- If $s'_1 \in \text{Post}(s_1)$, then there exists an $s'_2 \in \text{Post}(s_2)$ with $(s'_1, s'_2) \in R$.
- If $s'_2 \in \text{Post}(s_2)$, then there exists an $s'_1 \in \text{Post}(s_1)$ with $(s'_1, s'_2) \in R$.

States s_1 and s_2 are bisimulation-equivalent (or bisimilar), denoted $s_1 \sim_{TS} s_2$, if there exists a bisimulation R for TS with $(s_1, s_2) \in R$. The relations $\sim_n \subseteq S \times S$ are inductively defined by:

(a) $s_1 \sim_0 s_2$ iff $L(s_1) = L(s_2)$.

(b) $s_1 \sim_{n+1} s_2$ iff
- $L(s_1) = L(s_2)$,
- for all $s'_1 \in \text{Post}(s_1)$ there exists $s'_2 \in \text{Post}(s_2)$ with $s'_1 \sim_n s'_2$,
- for all $s'_2 \in \text{Post}(s_2)$ there exists $s'_1 \in \text{Post}(s_1)$ with $s'_1 \sim_n s'_2$.

Show that for finite TS it holds that $\sim_{TS} = \bigcap_{n \geq 0} \sim_n$, i.e., $s_1 \sim_{TS} s_2$ if and only if $s_1 \sim_n s_2$ for all $n \geq 0$.
Solution 10.1

(a) Yes. \(H = \{(s_0, t_0), (s_1, t_1), (s_2, t_2), (s_3, t_2), (s_4, t_0)\} \).

(b) No. If there exists a simulation \(H \) from \(K_3 \) to \(K_2 \), then we know that \((u_0, t_0) \in H \).
Since \(u_0 \rightarrow u_1 \) we have \((u_1, t_1) \in H \). However, \(u_1 \rightarrow u_4 \) and \(u_4 \) satisfies \(p \), but no successors of \(t_1 \) satisfy \(p \), so \(H \) cannot exist.

(c) Yes. \(H = \{(t_0, u_0), (t_1, u_1), (t_2, u_3)\} \).

(d) Yes. \(H = \{(s_0, u_0), (s_1, u_1), (s_2, u_3), (s_3, u_3), (s_4, u_0)\} \). Alternatively, we can also prove that \(K_1 \) and \(K_2 \) are bisimilar and use the result from (c).

Solution 10.2

Let \(H_{12} \) be a bisimulation between \(K_1 \) and \(K_2 \) and \(H_{23} \) be a bisimulation between \(K_2 \) and \(K_3 \). We define \(H_{13} = \{(s, u) \mid \exists t : (s, t) \in H_{12} \land (t, u) \in H_{23}\} \) and show that \(H_{13} \) is a bisimulation between \(K_1 \) and \(K_3 \).

First, we prove that \(H_{13} \) is a simulation from \(K_1 \) to \(K_3 \). Basically, we need to prove that if \((s, u) \in H_{13} \) and \(s \rightarrow_1 s' \), then there exists \(u' \) such that \(u \rightarrow_3 u' \) and \((s', u') \in H_{13} \).
From the definition of \((s, u) \in H_{13} \), we know that there exists \(t \) such that \((s, t) \in H_{12} \) and \((t, u) \in H_{23} \). Since \((s, t) \in H_{12} \) and \(s \rightarrow_1 s' \), there must exist \(t' \) such that \(t \rightarrow_2 t' \) and \((s', t') \in H_{12} \). Similarly, since \((t, u) \in H_{23} \) and \(t \rightarrow_2 t' \), there must exist \(u' \) such that \(u \rightarrow_3 u' \) and \((t', u') \in H_{23} \). Because \((s', t') \in H_{12} \) and \((t', u') \in H_{23} \), by the definition of \(H_{13} \) we have \((s', u') \in H_{13} \).

Analogously, we can prove that \(\{(u, s) \mid (s, u) \in H_{13}\} \) is a simulation from \(K_3 \) to \(K_1 \).

Solution 10.3

First we’ll show that \(s_1 \sim_{TS} s_2 \implies s_1 \sim_n s_2 \) for all \(n \geq 0 \) using induction on \(n \). Base case is trivial since \(s_1 \sim_{TS} s_2 \implies s_1 \sim_0 s_2 \). For the general case we assume that \(s_1 \sim_{TS} s_2 \implies s_1 \sim_{k-1} s_2 \) and we will show that \(s_1 \sim_{TS} s_2 \implies s_1 \sim_k s_2 \). Now, for a pair of states such that \(s_1 \sim_{TS} s_2 \) there exist an \(R \) such that \((s_1, s_2) \in R \) and for \(s'_1 \in \text{Post}(s_1) \), there exist \(s'_2 \in \text{Post}(s_2) \) with \((s'_1, s'_2) \in R \) which implies that \(s'_1 \sim_{TS} s'_2 \). By using the induction assumption, this implies that \(s'_1 \sim_{k-1} s'_2 \). Hence, the second condition in the definition of \(s_1 \sim_k s_2 \) is satisfied. Similarly, we can show that the third condition will also be satisfied.

For the other direction, we define a relation \(R := \{(s_1, s_2) \mid s_1 \sim_n s_2, \forall n \geq 0\} \). We shall now show that this is a bisimulation relation. We first claim that \(s_1 \sim_n s_2 \implies s_1 \sim_k s_2 \) for all \(k \leq n \) (Use induction on \(k \)). Now, since the \(TS \) is finite, there exist \(N \in \mathbb{N} \) such that \(\sim_k = \sim_N \) for all \(k \geq N \) (Why?). Assume \((s_1, s_2) \in R \) then trivially \(L(s_1) = L(s_2) \) and if \(s'_1 \in \text{Post}(s_1) \) then pick some \(n_0 > N \) and since \(s_1 \sim_{n_0} s_2 \), there exists \(s'_2 \in \text{Post}(s_2) \) with \(s'_1 \sim_{n_0} s'_2 \) which implies that \(s'_1 \sim_n s'_2 \) for all \(n \geq 0 \). This means that \((s'_1, s'_2) \in R \) and the second condition for \(R \) to be a bisimulation is satisfied. Similarly, \(R \) satisfies the third condition as well.