Fundamental Algorithms

Chapter 3: Searching

Jan Křetínský

Winter 2021/22
Searching

Definition (Search Problem)

Input: a sequence or set \(A \) of \(n \) elements (objects) \(\in A \), and an element \(x \in A \).

Output: The (smallest) index \(i \in \{1, \ldots, n\} \) with \(x = A[i] \), or NIL, if \(x \notin A \).

SeqSearch \((A: \text{Array}[1..n], \ x:\text{Element}) : \text{Integer} \) {
 \text{for } i \text{ from } 1 \text{ to } n \text{ do }
 \text{if } x = A[i] \text{ then return } i;
\}

\text{return NIL; }
Time Complexity of SeqSearch

SeqSearch \((A: Array[1..n], x: \text{Element}) : \text{Integer} \) {
 for \(i \) from 1 to \(n \) do {
 if \(x = A[i] \) then return \(i \);
 }
 return NIL;
}
→ count number of comparisons

Worst Case:

- we have to compare every \(A[i] \) with \(x \) \(\Rightarrow \) \(n \) comparisons
- occurs if \(A[n]=x \) or if \(x \notin A \)
Time Complexity of SeqSearch (2)

Average Case:

- simplifying assumption: no duplicate elements
- \(p := \text{probability that } x = A[i] \)
 (assumption: \(p \) independent of \(i \))
- expected number of comparisons:

\[
\bar{C}(n) = \sum_{i=1}^{n} pi + (1 - np)n = \frac{pn(n + 1)}{2} + (1 - np)n
\]

- assume that \(x \) occurs in \(A \), thus \(p = \frac{1}{n} \), then:

\[
\bar{C}(n) = \frac{n(n + 1)}{2n} + 0n = \frac{n + 1}{2}
\]

(on average, we have to search through half of the array)
Searching – Divide and Conquer?

Will a divide-and-conquer approach work?

```plaintext
DQSearch(A: Array[p..r], x: Integer) : Integer {
    if p=r then {
        if x=A[p] then return p
        else return NIL;
    }
    else {
        m := floor((p+r)/2);
        q := DQSearch(A[p,m], x);
        if q = NIL then return DQSearch(A[m+1,r], x)
        else return q;
    }
}
```
Binary Search on Sorted Lists

Divide-and-conquer approach only works, if the array is sorted:

```
BinarySearch (A: Array[p..r], x: Integer) : Integer {
    if p=r
    then {
        if x=A[p] then return p
        else return NIL;
    }
    else {
        m := floor((p+r)/2);
        if x <= A[m]
        then return BinarySearch(A[p..m], x)
        else return BinarySearch(A[m+1..r], x)
    end if;
}
```
Time Complexity of BinarySearch

Number of comparisons on an array with n elements:

- similar to divide-and-conquer: $\log n$ subsequent recursive calls
- one comparison per call plus comparison with final element
 $\Rightarrow 1 + \log n$
- homework: formulate as recurrence

Discussion:

- What happens if we have to insert/delete elements in our sequence?
 \Rightarrow re-sorting of the sequence required
 $\Rightarrow O(n \log n)$ effort
- therefore: Searching strongly dependent on choice of appropriate data structures for inserting and deleting elements!
Binary Search Trees

An (internal) **binary search tree** stores the elements in a binary tree. Each tree-node corresponds to an element. All elements in the left sub-tree of a node \(v \) have a smaller key-value than \(\text{key}[v] \) and elements in the right sub-tree have a larger-key value. We assume that all key-values are different.

(External Search Trees store objects only at leaf-vertices)

Examples:

```
          6
         / \   \
        2   7
       / \   / \
      1   5 8
```

```
          1
         / \   \
        2   5
       /     / \
      6     7   8
```
Binary Search Trees

We consider the following operations on binary search trees. Note that this is a super-set of the dictionary-operations.

- $T.\text{insert}(x)$
- $T.\text{delete}(x)$
- $T.\text{search}(k)$
- $T.\text{successor}(x)$
- $T.\text{predecessor}(x)$
- $T.\text{minimum}()$
- $T.\text{maximum}()$
Binary Search Trees: Searching

TreeSearch(root, 17)

Algorithm 1 TreeSearch(x, k)

1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)
Algorithm 1 TreeSearch(x, k)

1: if $x = \text{null}$ or $k = \text{key}[x]$ return x
2: if $k < \text{key}[x]$ return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)
Binary Search Trees: Minimum

Algorithm 2 TreeMin(x)

1: if x = null or left[x] = null return x
2: return TreeMin(left[x])
Binary Search Trees: Successor

Algorithm 3 TreeSucc(x)

1: if right[x] ≠ null return TreeMin(right[x])
2: y ← parent[x]
3: while y ≠ null and x = right[y] do
4: x ← y; y ← parent[x]
5: return y;
Binary Search Trees: Successor

Algorithm 3 TreeSucc(\(x\))

1: if right[\(x\)] \(\neq\) null return TreeMin(right[\(x\)])
2: \(y \leftarrow\) parent[\(x\)]
3: while \(y \neq\) null and \(x =\) right[\(y\)] do
4: \(x \leftarrow y; y \leftarrow\) parent[\(x\)]
5: return \(y\);
Binary Search Trees: Insert

Insert element **not** in the tree.

TreeInsert(root, 20)

Search for \(z\). At some point the search stops at a null-pointer. This is the place to insert \(z\).

Algorithm 4 TreeInsert\((x, z)\)

1: if \(x = \text{null}\) then
2: root[\(T\)] \(\leftarrow\) \(z\); parent[\(z\)] \(\leftarrow\) null;
3: return;
4: else if key[\(x\)] > key[\(z\)] then
5: if left[\(x\)] = null then
6: left[\(x\)] \(\leftarrow\) \(z\); parent[\(z\)] \(\leftarrow\) \(x\);
7: else TreeInsert(left[\(x\)], \(z\));
8: else
9: if right[\(x\)] = null then
10: right[\(x\)] \(\leftarrow\) \(z\); parent[\(z\)] \(\leftarrow\) \(x\);
11: else TreeInsert(right[\(x\)], \(z\));
Case 1:
Element does not have any children

- Simply go to the parent and set the corresponding pointer to null.
Case 2:
Element has exactly one child

- Splice the element out of the tree by connecting its parent to its successor.
Case 3:
Element has two children

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor
Binary Search Trees: Delete

Algorithm 5 TreeDelete(z)

1: if left[z] = null or right[z] = null
2: then y ← z else y ← TreeSucc(z);
3: if left[y] ≠ null
4: then x ← left[y] else x ← right[y];
5: if x ≠ null then parent[x] ← parent[y];
6: if parent[y] = null then
7: root[T] ← x
8: else
9: if y = left[parent[y]] then
10: left[parent[y]] ← x
11: else
12: right[parent[y]] ← x
13: if y ≠ z then copy y-data to z

select y to splice out

x is child of y (or null)

parent[x] is correct

fix pointer to x
Balanced Binary Search Trees

All operations on a binary search tree can be performed in time $O(h)$, where h denotes the height of the tree.

However the height of the tree may become as large as $\Theta(n)$.

Balanced Binary Search Trees

With each insert- and delete-operation perform local adjustments to guarantee a height of $O(\log n)$.

AVL-trees, Red-black trees, Scapegoat trees, 2-3 trees, B-trees, AA trees, Treaps

similar: SPLAY trees.