Weighted Graphs

Definition (Weighted Graph)

A weighted graph $G = (V, E)$ is attributed by a function w that assigns a weight $w(e)$ to each edge $e \in E$.
Weighted Graphs

Definition (Weighted Graph)

A weighted graph \(G = (V, E) \) is attributed by a function \(w \) that assigns a weight \(w(e) \) to each edge \(e \in E \).

Comments

- typically: \(w(e) > 0 \) or \(w(e) \geq 0 \) (but negative weights possible)
- we will consider weighted graphs with \(w : E \rightarrow \mathbb{N} \)
- notation: we will also write \(w(V, W) \), instead of \(w((V, W)) \), for the weight \(w(e) \) of the edge \(e = (V, W) \)
- examples: traffic networks, costs for routing, etc.
Shortest Path

Definition (Length of a Path)

The length of a path $p = (V_0, V_1), (V_1, V_2), \ldots, (V_{n-1}, V_n)$ in a weighted graph is defined as

$$\bar{w}(p) := \sum_{j=1}^{n} w(V_{j-1}, V_j).$$
Shortest Path

Definition (Length of a Path)

The length of a path \(p = (V_0, V_1), (V_1, V_2), \ldots, (V_{n-1}, V_n) \) in a weighted graph is defined as

\[
\overline{w}(p) := \sum_{j=1}^{n} w(V_{j-1}, V_j).
\]

Definition (Distance between Vertices)

The distance \(d(V, W) \) between two vertices \(V \) and \(W \) is defined as the length of the shortest path \(p = (V_0, V_1), (V_1, V_2), \ldots, (V_{n-1}, V_n) \) that connects \(V \) and \(W \):

\[
d(V, W) = \min \{ \overline{w}(p) : p = (V_0, V_1), (V_1, V_2), \ldots, (V_{n-1}, V_n),
\forall j: (V_{j-1}, V_j) \in E, V = V_0, W = V_n \}.
\]
All-Pairs Shortest Path

For non-weighted graphs: (try this at home!)
BF-traversal finds the shortest path from a starting node to all connected nodes.
→ is there an efficient algorithm to find the shortest path from all nodes to all other nodes? (“all-pairs shortest path”)
All-Pairs Shortest Path

For non-weighted graphs: (try this at home!)
BF-traversal finds the shortest path from a starting node to all connected nodes.

→ is there an efficient algorithm to find the shortest path from all nodes to all other nodes? (“all-pairs shortest path”)

→ is there an efficient algorithm to find which nodes are connected by a path of length l?
All-Pairs Shortest Path

For non-weighted graphs: (try this at home!)
BF-traversal finds the shortest path from a starting node to all connected nodes.

→ is there an efficient algorithm to find the shortest path from all nodes to all other nodes? (“all-pairs shortest path”)
→ is there an efficient algorithm to find which nodes are connected by a path of length l?
→ is there an efficient algorithm to find which nodes are connected by only the first k nodes? (assuming an ordering of the nodes)

For weighted graphs:
Generalize the last idea for weighted graphs
→ Incrementally construct shortest paths from nodes connected by only the first k nodes
All-Pairs Shortest Path

For non-weighted graphs: (try this at home!)
BF-traversal finds the shortest path from a starting node to all connected nodes.

→ is there an efficient algorithm to find the shortest path from all nodes to all other nodes? ("all-pairs shortest path")
→ is there an efficient algorithm to find which nodes are connected by a path of length \(l \)?
→ is there an efficient algorithm to find which nodes are connected by only the first \(k \) nodes? (assuming an ordering of the nodes)

For weighted graphs:
Generalize the last idea for weighted graphs

→ Incrementally construct shortest paths from nodes connected by only the first \(k \) nodes
→ We will implement the algorithm for directed graphs (modifying it for undirected graphs is straightforward)
Floyd’s Algorithm

Floyd_basic (W: Array[1..n,1..n]) {
! Input: weight/adjacency matrix W
! assume: W[i,j] = inf, if i not connected to j
! Output: W[i,j] shortest part from i to j

for k from 1 to n do
! check for all (i,j) whether a shorter path exists
! that runs through vertex k
for i from 1 to n do
for j from 1 to n do
W[i,j] = min(W[i,k]+W[k,j], W[i,j])
end do
end do
end do }
Floyd’s Algorithm (2)

Disadvantages of Floyd basic:

- input array W is overwritten
- we get the length of the shortest path, but not the path itself!

Floyd (W: Array $[1..n,1..n]$, S: Array $[1..n,1..n]$, P: Array $[1..n,1..n]$) {
 ! Output: S will contain lengths
 ! P allows to reconstruct shortest path
 for i from 1 to n do
 for j from 1 to n do
 $S[i,j] = W[i,j]$
 $P[i,j] = 0$
 end do
 end do
Floyd’s Algorithm (3)

! main loop of Floyd():
for k from 1 to n do
 for i from 1 to n do
 for j from 1 to n do
 if $S[i,k] + S[k,j] < S[i,j]$ then
 $S[i,j] = S[i,k] + S[k,j]$;
 ! memorize connection via k
 $P[i,j] = k$;
 end if
 end do
 end do
end do

Use array P to reconstruct shortest path:
- $P[i,j]$ indicates that shortest path runs through vertex k
- check $P[i,k]$ and $P[k,j]$ for further info
Floyd’s Algorithm – Correctness

Ingredients:

- **Optimality Principle:**
 If the shortest path between nodes \(A \) and \(B \) visits a node \(C \), then this path consists of the shortest paths between \(A \) and \(C \), and between \(C \) and \(B \).

- **No cycles:**
 The shortest path between any two nodes does not contain a cycle, i.e., contains any node at most once.
 → while edges are allowed to have negative weights, cycles must not lead to negative weight

- **Loop Invariant** for the \(k \)-loop:
 At entry of the \(k \)-loop, \(S[i, j] \) contains (for every pair \(i,j \)) the length of the shortest path between \(i \) and \(j \) that only visits nodes with index smaller than \(k \).
Floyd’s Algorithm on the PRAM

FloydPRAM (W: Array [1 .. n, 1 .. n]) {
 for k from 1 to n do
 for i from 1 to n do in parallel
 for j from 1 to n do in parallel
 if W[i,k] + W[k,j] < W[i,j]
 then W[i,j] = W[i,k] + W[k,j]
 end do
 end do
 end do
}

Classify concurrent/exclusive read/write?
Floyd’s Algorithm on the PRAM

FloydPRAM \((W: \text{Array} [1..n, 1..n]) \) \{
 for \(k \) from 1 to \(n \) do
 for \(i \) from 1 to \(n \) do in parallel
 for \(j \) from 1 to \(n \) do in parallel
 if \(W[i,k] + W[k,j] \) < \(W[i,j] \)
 then \(W[i,j] = W[i,k] + W[k,j] \)
 end do
 end do
 end do
\}

Classify concurrent/exclusive read/write?
- **concurrent read** to row \(W[*,k] \) and column \(W[k,*] \)
Dijkstra’s Algorithm for Shortest Paths

Problem setting: “single-source shortest path”

- given is a directed graph $G = (V, E)$ and a start vertex $r \in V$
- we want to compute the shortest path from r to each vertex in G that is reachable from r
 \rightarrow this is a **spanning tree** of shortest paths
Dijkstra’s Algorithm for Shortest Paths

Problem setting: “single-source shortest path”

- given is a directed graph $G = (V, E)$ and a start vertex $r \in V$
- we want to compute the shortest path from r to each vertex in G
 that is reachable from r
 → this is a **spanning tree** of shortest paths

Idea: “Greedy Algorithm”

- maintain a spanning tree S of vertices and “explored” shortest paths
- maintain a set $Q = V \setminus S$ of unexplored vertices
- for each $v \in Q$, determine the shortest path to v that can be obtained by adding a single edge to the spanning tree S
- add v_{\min} (with shortest path) to S and update Q
- repeat until all vertices are in the explored path
Dijkstra’s Algorithm – Implementation

Spanning Tree S of Shortest Paths

- use an array $\text{Parent}[1..n]$ for the n vertices
- $\text{Parent}[i]$ contains the parent of vertex i in the spanning tree
Dijkstra’s Algorithm – Implementation

Spanning Tree \(S \) of Shortest Paths
- use an array \(\text{Parent}[1..n] \) for the \(n \) vertices
- \(\text{Parent}[i] \) contains the parent of vertex \(i \) in the spanning tree

Set \(Q \) of Unexplored Vertices
- accompanied by an array \(\text{Dist}[1..n] \)
- \(\text{Dist}[i] \) contains the shortest path to vertex \(i \) that adds only one edge to \(S \)
- we will need to update \(\text{Dist}[1..n] \) after each change of \(Q \)
- for vertices \(i \notin Q \), \(\text{Dist}[i] \) is the length of the shortest path (i.e., they will not be further considered; therefore weights must not be negative!)
Dijkstra's Algorithm – Implementation (2)

```plaintext
Dijkstra(W: Array[1..n, 1..n], r: Node) {
    ! initialise data structures
    Array Parent[1..n];
    Array Dist[1..n];
    for i from 1 to n do
        Dist[i] = inf;
    end do;
    ! init Parent and Dist for root r:
    Parent[r] = 0;
    Dist[r] = 0;
    ! init sets of explored and unexplored vertices
    Set S = {};
    Set Q = {1, ..., n};
    ! ... to be continued ...
```
Dijkstra’s Algorithm – Implementation (3)

! main loop of Dijkstra (...)
while Q <> {} do
 ! remove node with smallest Dist[] from Q
 X = removeSmallest(Q, Dist);
 S = union(S, X);
 ! X is added to S, thus update Dist:
 forall (X,V) in X.edges do
 if V in S then continue;
 ! update neighbours of X that are not in S:
 d := Dist[X.key] + W[X.key,V.key];
 if d < Dist[V.key] then
 Dist[V.key] := d;
 Parent[V.key] := X.key;
 end if
 end do;
end while;
}
Dijkstra’s Algorithm – Comments

• Why do we not update Dist[X.key] and Parent[X.key]?
Dijkstra’s Algorithm – Comments

- Why do we not update Dist[X.key] and Parent[X.key]?
 → this was already set in the previous iteration of the while-loop
Dijkstra’s Algorithm – Comments

- Why do we not update Dist[X.key] and Parent[X.key]?
 → this was already set in the previous iteration of the while-loop

- how do we obtain the shortest path?
Dijkstra’s Algorithm – Comments

- Why do we not update Dist[X.key] and Parent[X.key]?
 → this was already set in the previous iteration of the while-loop

- how do we obtain the shortest path?
 → via the Parent[] array:

```java
shortestPath(key: Int) : List {
  if Parent[key] = 0
    then return [key]
  else return append(shortestPath(Parent[key]), key);  
  end if;
}
```
Dijkstra’s Algorithm – Complexity

Priority Queues:

- How is the function removeSmallest implemented?
Dijkstra’s Algorithm – Complexity

Priority Queues:

- How is the function removeSmallest implemented?
- Idea: sort elements of Q according to array Dist
- ToDo: Update sorting of Q after changes to Dist

$$\text{if } d < \text{Dist}[V.\text{key}] \text{ then}$$

$$\text{Parent}[V.\text{key}] := X.\text{key} ;$$

$$\text{Dist}[V.\text{key}] := d ;$$

$$\text{updateSorting}(Q, \text{Dist}, V) ;$$

$$\text{end if}$$

- integrated data structure for such purposes: priority queue
Dijkstra’s Algorithm – Complexity

Priority Queues:
- How is the function removeSmallest implemented?
- Idea: sort elements of Q according to array $Dist$
- ToDo: Update sorting of Q after changes to $Dist$

```java
if $d < Dist[V.key]$ then
    Parent[V.key] := X.key;
    Dist[V.key] := d;
    updateSorting(Q, Dist, V);
end if
```

- integrated data structure for such purposes: priority queue

Complexity of Dijkstra’s Algorithm:
- a complexity of $\Theta(|E| + |V| \log |V|)$ is possible
- for dense graphs, $|E| \in \Theta|V|^2$, the complexity is thus $\Theta(|V|^2)$
Dijkstra – Single Source, Single Destination

Single Source, All Destinations:

- we can terminate Dijkstra’s Algorithm after the destination node has been removed from Q:

 \[
 X = \text{removeSmallest}(Q, \text{Dist}); \\
 \text{if } X = \text{destination} \text{ then return } X;
 \]

- otherwise Dijkstra’s Algorithm finds the shortest path from the source to all nodes in the graph.

Question:
Can Dijkstra’s Algorithm be improved, if the shortest path to only one specific destination is wanted?
Dijkstra – Single Source, Single Destination

Single Source, All Destinations:

- we can terminate Dijkstra’s Algorithm after the destination node has been removed from Q:

 \[X = \text{removeSmallest}(Q, \text{Dist}); \]
 \[\text{if } X = \text{destination} \text{ then return } X; \]

- otherwise Dijkstra’s Algorithm finds the shortest path from the source to all nodes in the graph.

Question:
Can Dijkstra’s Algorithm be improved, if the shortest path to only one specific destination is wanted?

- or more general: is there a better algorithm to solve the single-source-single-destination problem?
Dijkstra – Single Source, Single Destination

Single Source, All Destinations:

- we can terminate Dijkstra’s Algorithm after the destination node has been removed from Q:

 \[X = \text{removeSmallest}(Q, \text{Dist}); \]

 \[\text{if } X = \text{destination} \text{ then return } X; \]

- otherwise Dijkstra’s Algorithm finds the shortest path from the source to all nodes in the graph.

Question:

Can Dijkstra’s Algorithm be improved, if the shortest path to only one specific destination is wanted?

- or more general: is there a better algorithm to solve the single-source-single-destination problem?

 → there is no algorithm known that is asymptotically faster
Minimum Spanning Tree

Definition (Minimum Spanning Tree)

A spanning tree $T = (V, E)$ is called a minimum spanning tree for the graph $G = (V, E')$, if the sum of the weights of all edges of T is minimal (among all possible spanning trees).
Minimum Spanning Tree

Definition (Minimum Spanning Tree)

A spanning tree $T = (V, E)$ is called a minimum spanning tree for the graph $G = (V, E')$, if the sum of the weights of all edges of T is minimal (among all possible spanning trees).

Towards an Algorithm:
Minimum Spanning Tree

Definition (Minimum Spanning Tree)

A spanning tree \(T = (V, E) \) is called a **minimum spanning tree** for the graph \(G = (V, E') \), if the sum of the weights of all edges of \(T \) is minimal (among all possible spanning trees).

Towards an Algorithm:

- Dijkstra’s Algorithm computes a spanning tree of shortest paths
Minimum Spanning Tree

Definition (Minimum Spanning Tree)

A spanning tree \(T = (V, E) \) is called a **minimum spanning tree** for the graph \(G = (V, E') \), if the sum of the weights of all edges of \(T \) is minimal (among all possible spanning trees).

Towards an Algorithm:

- Dijkstra’s Algorithm computes a spanning tree of shortest paths
- Idea: modify Dijkstra’s “greedy approach”
 \(\rightarrow \) successively add edges to a subtree
- minimise total weight of edges instead of path lengths
 \(\rightarrow \) add node that is closest to the current subtree
Minimum Spanning Tree

Definition (Minimum Spanning Tree)

A spanning tree \(T = (V, E) \) is called a **minimum spanning tree** for the graph \(G = (V, E') \), if the sum of the weights of all edges of \(T \) is minimal (among all possible spanning trees).

Towards an Algorithm:

- Dijkstra’s Algorithm computes a spanning tree of shortest paths
- Idea: modify Dijkstra’s “greedy approach”
 → successively add edges to a subtree
- minimise total weight of edges instead of path lengths
 → add node that is closest to the current subtree

⇒ **Prim’s Algorithm**
Minimum Spanning Tree – Prim’s Algorithm

Prim (W: Array[1..n,1..n], r:Node) {
 ! initialise data structures
 Array Parent[1..n];
 Array Nearest[1..n]; ! replaces Dist
 for i from 1 to n do
 Nearest[i] = inf;
 end do;
 ! init Parent and Dist for root r:
 Parent[r] = 0;
 Nearest[r] = 0;
 ! init sets of explored and unexplored vertices
 Set S = {};
 Set Q = {1, .., n};
 ! ... to be continued ...
Minimum Spanning Tree – Prim’s Algorithm (2)

! main loop of Prim (…)
while Q <> {} do
 ! remove nearest node from Q
 X = removeNearest(Q, Nearest);
 S = union(S, X);
 ! X is added to S, thus update Nearest:
 forall (X,V) in X.edges do
 if V in S then continue;
 ! update neighbours of X that are not in S:
 if W[X.key,V.key] < Nearest[V.key] then
 Nearest[V.key] := W[X.key,V.key];
 Parent[V.key] := X.key;
 end if
 end do;
end while;
Minimum Spanning Tree – Kruskal’s Algorithms

Another “Greedy” Algorithm:

- Idea: successively select edges with lowest weight
- but avoid cycles
- requires union-find data structure

Kruskal \((V,E): \text{Set}\ \{\)

\[
\begin{align*}
S &:= \emptyset; \\
\text{forall } v \text{ in } V \text{ do} & \quad \text{MAKE_SET}(v); \\
\text{end do}; \\
\text{forall } (u,v) \text{ in } E \text{ ordered by increasing weight}(u,v) \text{ do} & \quad \text{if } \text{FIND_SET}(u) \neq \text{FIND_SET}(v) \text{ then} \\
& \quad \quad S := S \cup \{(u,v)\}; \\
& \quad \quad \text{UNION}(u, v); \\
& \quad \text{end if}; \\
\text{end do}; \\
\text{return } S;
\end{align*}
\]
Minimum Spanning Tree

History:

- Kruskal’s algorithm: Joseph Kruskal 1956
Minimum Spanning Tree

History:

- Kruskal’s algorithm: Joseph Kruskal 1956
- Borůvka’s/Sollin’s algorithm: Otakar Borůvka 1926 (as a method of constructing an efficient electricity network for Moravia), rediscovered by Choquet 1938, Florek, Łukasiewicz, Perkal, Steinhaus, and Zubrzycki 1951, Sollin 1965
Minimum Spanning Tree

History:

- Kruskal’s algorithm: Joseph Kruskal 1956
- Borůvka’s/Sollin’s algorithm: Otakar Borůvka 1926 (as a method of constructing an efficient electricity network for Moravia), rediscovered by Choquet 1938, Florek, Łukasiewicz, Perkal, Steinhaus, and Zubrzycki 1951, Sollin 1965
Minimum Spanning Tree

History:

- Kruskal’s algorithm: Joseph Kruskal 1956
- Borůvka’s/Sollin’s algorithm: Otakar Borůvka 1926 (as a method of constructing an efficient electricity network for Moravia), rediscovered by Choquet 1938, Florek, Łukasiewicz, Perkal, Steinhaus, and Zubrzycki 1951, Sollin 1965
 - similar to Kruskal’s algorithm