Exercise 1 (Parallel Scalar)

Write a parallel program that computes the scalar product of two vectors (stored in two arrays). Discuss the runtime complexity on the EREW PRAM model. How many processors can be used?

Solution:

Algorithm 1: \texttt{ScalarSeq}

- **Input:**
 - A: Array $[1..n]$
 - B: Array $[1..n]$
- **Result:** Scalar product of A and B

- $res \leftarrow 0$
- for $i = 1$ to n
 - $res \leftarrow res + A[i] \cdot B[i]$
- return res

Algorithm 2: \texttt{ScalarPRAM}

- **Input:**
 - A: Array $[1..2^k]$
 - B: Array $[1..2^k]$
- **Result:** Scalar product of A and B

- $C \leftarrow \text{Array}[1..2^k]$
- for $i = 1$ to n
 - $C[i] \leftarrow A[i] \cdot B[i]$
- for $l = 1$ to k
 - for $j = 1$ to 2^{k-l} in parallel
 - $C[2^l j] \leftarrow C[2^l j] + C[2^l j + 2^{l-1}]$
 - end
- return $C[1]$

In the first loop, n processors can be used, in the second one only at most $\frac{1}{2}n$. The time complexity thus is $\Theta(\log n)$, as $k = \log n$ on n processors. The complexity remains $\Theta(\log n)$ on $\frac{1}{2}n$ processors, since the first loop could also be executed on $\frac{1}{2}n$ processors in $\Theta(1)$ runtime (with each processor executing two multiplications).

Exercise 2 (Parallel Vector)

Extend the program of exercise 1 to compute a matrix-vector product. Again, discuss the runtime complexity on the EREW PRAM and state the number of processors that are used.

Solution:

Using n^2 processors, the complexity of \texttt{MatVecPRAM} is $\Theta(\log n)$ due to the complexity of \texttt{ScalarPRAM}. Unfortunately, this implementation causes concurrent reads to X in \texttt{ScalarPRAM}, which works only on CREW PRAM, not on EREW PRAM. Instead, one has to replicate X for each of the n calls to \texttt{ScalarPRAM}, and then call \texttt{ScalarPRAM} for each copy.

For the first loop, \texttt{MatVecEREW} uses n processors in parallel to achieve $\Theta(1)$ runtime. The second one is $\Theta(\log n)$, using up to $\frac{1}{2}n^2$ processors and n parallel calls to \texttt{ScalarPRAM} ($\Theta(\log n)$ each). Together, we obtain an overall time complexity of $\Theta(\log n)$ using at most n^2 processors.
Algorithm 3: MatVecSeq

Input: M: Array[1..n, 1..n]
X: Array[1..n]

Result: Matrix-Vector-product of M and X

$C \leftarrow$ Array[1..n];
for $i = 1$ to n do
 $C[i] \leftarrow 0$;
 for $j = 1$ to n do $C[i] \leftarrow C[i] + M[i,j] \cdot X[i]$;
end
return C;

Algorithm 4: MatVecPRAM

Input: M: Array[1..2^k, 1..2^k]
X: Array[1..2^k]

Result: Matrix-Vector-product of M and X

$C \leftarrow$ Array[1..2^k];
for $i = 1$ to n in parallel do $C[i] \leftarrow$ ScalarPRAM($M[i,1..2^k]$, $X[1..2^k]$);
return C;

Algorithm 5: MatVecEREW

Input: M: Array[1..2^k, 1..2^k]
X: Array[1..2^k]

Result: Matrix-Vector-product of M and X

$C \leftarrow$ Array[1..2^k];
$X' \leftarrow$ Array[1..2^k][1..2^k];
for $i = 1$ to n in parallel do $X'[1,i] \leftarrow X[i]$;
for $l = 1$ to k do
 for $j = 1$ to 2^{k-l} in parallel do $X'[2^l j, i] \leftarrow X'[2^l j - 2^{l-1}, i]$;
end
for $i = 1$ to n in parallel do $C[i] \leftarrow$ ScalarPRAM($M[i,1..2^k]$, $X[1..n]$);
return C;

Exercise 3 (Parallel Optimization)

Given the following parallel algorithm PrefixPRAM for prefix multiplication (with EREW-PRAM).

Assume that the j-loop of the above program is changed to a sequential loop. State why the resulting algorithm is no longer correct, and suggest how to change the j-loop to obtain a correct sequential implementation. Also, state why the parallel loop works correctly.

Solution:

When the j-loop of the program is changed to a sequential loop, then $A[j - 2^l]$ is already changed to its new value, when $A[j]$ is updated. We obtain a correct implementation, if the j-loop is executed in reverse order, or if the j-loop is split into two loops: the first loop to compute all $tmp[j]$, and the second loop to update the $A[j]$. The parallel loop works correctly, because all $tmp[j]$ are assigned their value at the same time, i.e. before these values are copied to the $A[j]$.
Algorithm 6: PREFIXPRAM

Input: A: Array[1..2^k]
$\text{tmp} \leftarrow\text{Array}[1..2^k]$;
for $l = 0$ to $k - 1$ do
 for $j = 2^l + 1$ to n in parallel do
 $\text{tmp}[j] \leftarrow A[j - 2^l]$;
 $A[j] \leftarrow \text{tmp}[j] \cdot A[j]$;
 end
end