Master Seminar "Visual Feature Learning in Autonomous Driving"

Organizer: Emec Ercelik

Contact: emec.ercelik (at)

Modul: IN2107

Registration: Via Matching System

Type: MasterSeminar

Semester: Summer Semester 2020

ECTS: 5.0/4.0

Time & Location: Fridays, 9:00 - 11:00 & 03.07.011



  • Please see the table below for presentation days. [01.07.2020]
  • The midterm session will be held on 19.06, Friday instead of 12.06. (Mistakenly written as 18.06) [15.06.2020]
  • You can find records of introductory session in three parts. [1], [2], [3] [24.04.2020]
  • Here is the slides of introductory session. [24.04.2020]
  • You can reach the provided topics here. [24.04.2020]
  • The schedule will be the same, but all the meetings will take place online until a further notice. The link for the online meeting will be sent before the introduction session. [06.04.2020]
  • Preliminary schedule:
    • 24.04 : Introduction session
    • 30.04 : Topic assignment (online)
    • 30.04-15.05 : Collecting materials according to the provided references
    • 15.05 : Initial meetings
    • 18.06 : Midterm session
    • 10.07 : Submission of first drafts (online)
    • 17.07,24.07,31.07 : Presentation sessions
    • 07.08 : Submission of final reports (online)
    • 18.08 (not 14.08) : Submission of peer-reviews (online)
  • Approach in the seminar:
    • Students will be asked to provide either an extensive literature review on the topics, or a detailed comparison between two recent studies in the direction of the topics given below.
    • Throughout the seminar, students need to provide a draft report, a final report, a presentation, and a peer-review on one of the reports submitted by peers.
    • There will be an introductory session, in which the seminar and the topics will be introduced.
  • Please check the preliminary topics below for the seminar.
  • Please provide a CV and a motivation letter that states your achievements and aims related to this seminar until the end of 03.02.2019 ( Please send your documents to "emec.ercelik (at)" with the subject line "Seminar: Visual Feature Learning in Autonomous Driving" ).
  • There is no scheduled preliminary session.
  • Seminar web page


The ultimate aim of autonomous driving problem is to design self-driving cars that safely and comfortably navigate on the roads without human intervention. Since visual data contains rich information about the environment, this type of data can be utilized for autonomous driving tasks.

In this seminar course, students will investigate different autonomous driving related tasks that involve visual data processing methods. The focus of the given topics are visual feature extraction and learning methods used in the intersection of computer vision and autonomous driving domain.

                    Topics   Date Presentation

- Comparison of only LiDAR-based and fusion-based 3D object detection methods


- Semi-supervised, self-supervised, and unsupervised learning methods for object detection


- 3D Object detection using different data modalities


- Convolutional recurrent neural networks for object detection and tracking